STC5420 Synchronous Clocks for SETS

General Description

The RoHS 6/6 compliant STC5420 is a single chip clock synchronization solution for applications in SDH/SETS, SONET, and Synchronous Ethernet network elements. The device is fully compliant with ITU-T G.813 option 1 and 2, and Telcordia GR1244 and GR253.

The STC5420 accepts 12 clock reference

inputs and generates 10 synchronized clock outputs. Synchronized outputs may be programmed for a wide variety frequencies including Nx8kHz, OC-n, Ethernet frequencies and framing pulse clocks. Reference inputs are individually monitored for activity and quality. Reference selection may be manual, fastmanual or automatic.

Two independent timing generators, T0 and T4, operate in the Freerun, Synchronized, Pseudo Holdover and Holdover mode. Each timing generator includes a DSP- based PLL. Synchronized mode is in external timing while freerun, pseudo holdover and holdover mode are in self-timing. T0 supports Master/ Slave operation for redundant design. T4 only supports master operation. DSP-based PLL technology removes any external part except the oscillator. It provides excellent performance and reliability to STC5420.

The STC5420 is clocked by a 12.8MHz external oscillator (TCXO or OCXO). A well-chosen external oscillator, such as T502-012.8M or T602-012.8M from Connor-Winfield, will allow you to meet all the synchronization requirements.

Features

- Complies with ITU-T G.813 (option1 and option2), Telcordia GR1244 and GR253 (Stratum3/4E/4/SMC)
- Two timing generators, T0 and T4
- Supports Master/Slave and Multiple Master redundant application (T0 only)
- Accepts 12 clock reference inputs; T4 may times to T0's synchronized output
- Reference clock inputs are automatically frequency detected; each is monitored for activity and quality
- Supports manual, fast-manual and automatic reference selection
- Outputs 10 synchronized clock outputs, including 2 framing pulse clocks
- Seven clocks synthesizers generate frequencies: x1 OC-n, x1 Ethernet, x4 general purpose, x1 framing pulse
- Provides programmable compensation for phase delay between master and slave unit, in 0.1ns steps
- Phase-align or hit-less reference locking switching
- Programmable loop bandwidth, from 0.1Hz to 100Hz
- · Programmable phase skew in synthsizer level
- Supports bus interface: Intel, Motorola, Multiplex, SPI

02

- Single 3.3V operation
- IEEE 1149.1 JTAG boundary scan
- Available in TQFP100 package

Block Diagram

Table of Contents

Overview and Features	1
Table of Contents	2-3
STC5420 Pin Diagram (Top View)	4
STC5420 Pin Description	5-7
Register Map	8-9
Master Clock Frequency	10
Input and Output Frequency	10-11
General Description	13
Application	13
Overview	13
Reference Inputs	13
Timing Generator and Operation Mode	13
Phase Synchronization	13
Clock Outputs	13
Redundant Design	13
Control Interfaces	13
Advantage and Performance	13
Detailed Description	14-28
Chip Master and Freerun Clock Inputs	14
Operation Mode Introduction	14
Operation Mode Details	14
Freerun Mode	14
Synchronized Mode	14
Pseudo Holdover Mode	14
Holdover Mode	14
Operation Mode Transition Details	14
PLL Event In	15
Frequency and Phase Transients	15
Frequency Transients	15
Phase Transients	15
History of Fractional Frequency Offset	15
Short-Term History	15
Long-Term History	15
Device Holdover History	15
User-Specified History	15
Phase-Locked Loop Status Details	16
Beference Inputs Details	
Input Frequency and Frequency Offset Detection	16
	16
Input Qualification	17
Automatic Reference Election Mechanism	17-18
Automatic Reference Selection	18
Manual Reference Selection Mode	18
Hard-Wires Manual Reference Selection	18
Clock Outputs Details	18-19
Clock Synthesizers	10-13
Clock Generators	
Clock Outputs Phase Alignment	
Synthesizer Skew Programming	19
ejouen enem regramming	15

Table of Contents continued

Detailed Description Continued	
Redundant Application	
External Frame Reference Input	19
Master Slave Configuration	20
Multiple Master Configuration	20
Event Interrupts	21
Field Upgradability	21
Processor Interface Descriptions	21-28
SPI Bus Mode	21-22
Motorola Bus Mode	23-24
Intel Bus Mode	25-26
Multiplex Bus Mode	27-28
Register Descriptions and Operation	29-54
General Register Operation	29
Multibyte register reads	29
Multibyte register writes	29
Noise Transfer Functions	55
Specification Modification	56
Order Information	56
Application Notes	57
General	57
Power and Ground	57
Master Oscillators	57
Mechanical Specifications	58
Revision History	58

Table of Figures

Figure 1:	Functional Block Diagram 1	
Figure 2:	Pin Diagram	2
Figure 3:	Activity Monitor	,
Figure 4:	Reference Qualification Scheme	,
Figure 5:	Automatic Reference Elector States	3
Figure 6:	Output Clocks CLK1 and CLK2)
Figure 7:	Output Clocks CLK3-CLK8)
Figure 8:	Output Clocks CLK8K and CLK2K)
Figure 9:	SPI Bus, Read access (Pin CLKE = Low))
Figure 10:	SPI Bus Timing, Read access (Pin CLKE = High)	
Figure 11:	SPI Bus Timing, Write access)
Figure 12:	Motorola Bus Read Timing	3
Figure 13:	Motorola Bus Write timing	ł
Figure 14:	Intel Bus Read Timing 25	;
Figure 15:	Intel Bus Write Timing 26	;
Figure 16:	Multiplex Bus Read Timing	,
Figure 17:	Multiplex Bus Write Timing	3
Figure 18:	Noise Transfer Functions	;
Figure 19:	Power and Ground	,
Figure 20:	Mechanical Specifications	;

STC5420 Pin Diagram (Top View)

Figure 2 STC5420 Pin Diagram

Delivering a New Generation of Time and Frequency Solutions for a Connected World. STC5420 Data Sheet: TM112 Page 4 Rev: 02 Date: 09/28/2011

STC51420 Pin Description

All I/O is LVCMOS, except for CLK1 and CLK2 are LVPECL/LVDS. REF11 and REF12 are LVCMOS/LVPECL/LVDS

Pin Name	Pin #	I/O	Description		
AVCC	6.19		3 3V analog power input		
AGND	5, 20, 29		Analog ground		
VCC	12, 13, 16, 33, 39, 50, 61, 85, 86, 91		3.3V power input		
GND	1, 11, 14, 15, 32, 38, 49, 62, 84, 87, 92		Digital ground		
TRST	2	1	JTAG boundary scan reset, active low		
TCK	9	I	JTAG boundary scan clock		
TMS	7	1	JTAG boundary scan mode selection		
TDI	23	I	JTAG boundary scan data input		
TDO	21	0	JTAG boundary scan data output		
RST	74	I	Active low to reset the chip		
MCLK	10	I	Master clock input, 12.8 MHz		
CS	70	I	SPI bus chip select		
SCLK	73	I	SPI bus clock input		
SDI	69		SPI bus data input		
SDO	83	0	SPI bus data output		
CLKE	68		Clock edge selection for SPI. See section SPI Bus Mode		
EVENT_INTR	8	0	Event interrupt		
REF1	46		Reference input 1		
REF2	47	I	Reference input 2		
REF3	48		Reference input 3		
REF4	51	I	Reference input 4		
REF5	52	I	Reference input 5		
REF6	53		Reference input 6		
REF7	54		Reference input 7		
REF8	55		Reference input 8		
REF9	56	I	Reference input 9		
REF10	57		Reference input 10		
REF11_P	40	I	Differential reference input 11 (LVPECL/LVDS); LVCMOS reference input 11		
REF11_N	41		Differential reference input 11 (LVPECL/LVDS)		
REF12_P	42	I	Differential reference input 12 (LVPECL/LVDS); LVCMOS reference input 12		
REF12_N	43	I	Differential reference input 12 (LVPECL/LVDS)		
MC/SL	99	I	Select master or slave mode for T0, 1: Master, 0: Slave		
EX_SYNC	45	I	External framing signal		
CLK1_P	34	0	311.04/155.52/77.76/51.84/38.88/19.44MHz (From Synth. H1)		
			312.5/156.25/125/62.5/25MHz (From Synth. H2)		
CLK1_N	35	0	311.04/155.52/77.76/51.84/38.88/19.44MHz (From Synth. H1) 312.5/156.25/125/62.5/25MHz (From Synth. H2)		
CLK2_P	36	0	311.04/155.52/77.76/51.84/38.88/19.44MHz (From Synth. H1) 312.5/156.25/125/62.5/25MHz (From Synth. H2)		
CLK2_N	37	0	311.04/155.52/77.76/51.84/38.88/19.44MHz (From Synth. H1) 312.5/156.25/125/62.5/25MHz (From Synth. H2)		

Table 1: Pin Description

Table 1: Pin Description continued

STC5420 Data Sheet: TM112 Page 5 Rev: 02 Date: 09/28/2011

STC5420 Pin Description continued

Pin Name	Pin #	I/O	Description
CLK3	88	0	77.76/51.84/38.88/19.44/6.48MHz (From Synth. H1)
			62.5/25MHz (From Synth. H2)
			Proprietary composite signal (From Synth.F)
			(N1+1)x8kHz (From Synth. G1)
			(N2+1)x8kHz (From Synth. G2)
			(N3+1)x8kHz (From Synth. G3)
			(N4+1)x8kHz (From Synth. G4) (T4)
CLK4	89	0	77.76/51.84/38.88/19.44/6.48MHz (From Synth. H1)
			62.5/25MHz (From Synth. H2)
			Proprietary composite signal (From Synth.F)
			(N1+1)x8kHz (From Synth. G1)
			(N2+2)x8kHz (From Synth. G2)
			(N3+3)x8kHz (From Synth. G3)
			(N4+4)x8kHz (From Synth. G4) (T4)
CLK5	90	0	77.76/51.84/38.88/19.44/6.48MHz (From Synth. H1)
			62.5/25MHz (From Synth. H2)
			Proprietary composite signal (From Synth.F)
			(N1+1)x8kHz (From Synth. G1)
			(N2+1)x8kHz (From Synth. G2)
			(N3+1)x8kHz (From Synth. G3)
			(N4+1)x8kHz (From Synth. G4) (T4)
CLK6	93	0	77.76/51.84/38.88/19.44/6.48MHz (From Synth. H1)
			62.5/25MHz (From Synth. H2)
			Proprietary composite signal (From Synth.F)
			(N1+1)x8kHz (From Synth. G1)
			(N2+1)x8kHz (From Synth. G2)
			(N3+1)x8kHz (From Synth. G3)
			(N4+1)x8kHz (From Synth. G4) (T4)
CLK7	94	0	77.76/51.84/38.88/19.44/6.48MHz (From Synth. H1)
			62.5/25MHz (From Synth. H2)
			Proprietary composite signal (From Synth.F)
			(N1+1)x8kHz (From Synth. G1)
			(N2+1)x8kHz (From Synth. G2)
			(N3+1)x8kHz (From Synth. G3)
			(N4+1)x8kHz (From Synth. G4) (T4)
CLK8	95	0	77.76/51.84/38.88/19.44/6.48MHz (From Synth. H1)
			62.5/25MHz (From Synth. H2)
			Proprietary composite signal (From Synth.F)
			(N1+1)x8kHz (From Synth. G1)
			(N2+1)x8kHz (From Synth. G2)
			(N3+1)x8kHz (From Synth. G3)
			(N4+1)x8kHz (From Synth. G4) (T4)
CLK8K	30	0	8kHz framing signal
CLK2K	31	0	2kHz framing signal
NC	3, 4, 17,		No connection. Pins are recommended to be tied to ground
	22, 24,		-
	25, 26,		
	27, 28,		
	44, 96,		
	97, 98,		
	100		

Table 1: Pin Description continued

STC5420 Pin Description continued

Pin Name	Pin #	I/O	Description	
MPU_MODE0	60	I	Bus interface: Intel, Motorola, Multiplex, SPI	
MPU_MODE1	59	I		
MPU_MODE2	58	I		
SRCSW	19	I	Fast manual reference pre-selection	
A0	69		A0~A6: Address pins for bus interface Intel and Motorola	
A1	68	1		
A2	67			
A3	66			
A4	65			
A5	64	1		
A6	63	1		
RD	72		Read access for Intel and Multiplex bus interface	
WR	71		Write access for Intel, Motorola and Multiplex bus interface	
RDY	75	0	Ready/Data Acknowledge for Intel, Motorola and Multiplex bus interface	
ALE	73	1	Address latch enable for Multiplex bus interface	
AD0	83	10	AD0~AD7:	
AD1	80	I/O	1. Intel and Motorola bus interface data pins	
AD2	81	I/O	2. Multiplex bus interface data and address pins	
AD3	80	I/O		
AD4	79	I/O		
AD5	78	I/O		
AD6	77	I/O		
AD7	76	I/O		

Table 1: Pin Description continued

STC5420 Register Map

Addr	Beg Name	Bits	Type	Description
		15-0	B	Chip ID = 0x5420
0x01		10 0		
0x02	Chin Bey	7-0	R	Chin revision number
0x03	Chip_Nev	7-0	R	Chip sub-revision number
0x04	TO M/S Ste	0_0	R	Indicates TO master/slave state
0x04	TO Slave Phase Adi	15-0	R/M	TO slave phase adjust 2's complement step in 0 1ns
0x06		10-0	11/ VV	
0x07	Fill Obs Window	30	R/M	Activity monitor: Looky bucket fill observation window
0x08	Look Obs Window	30	R/M	Activity monitor: Leaky bucket look observation window
0x00	Bucket Size	50		Activity monitor: Leaky bucket size
0x03	Accort Throshold	50		Activity monitor: Leaky bucket alarm assort threshold
0x0a	Do Accort Threshold	50		Activity monitor: Leaky bucket alarm do apport threshold
00x00	Eroorup Coli	10.0		Freerup calibration, 2's complement, 102.4 to 1102 appmiston in
0x0d	Tieerun_Can	10-0		n 1nnm
	Disgualification Bange	a_n	R/M	Beference discuslification range $\Omega \sim 1023$ nmm. The value is also
0x0f	Disqualification_hange	5-0	11/ VV	specified as pull-in range
0x10	Qualification Bange	9-0	R/W	Beference qualification range 0 ~102 3ppm
0x11	Qualification_nango	00	1.1, VV	
0x12	Qualification Soaking Time	5-0	R/W	Reference qualification soaking time, 0 ~63s
0x13	Ref Info Selector	3-0	R/W	Determines which reference data is shown in register Ref. Info
0x14	Ref Info	15-0	R	Erequency offset info and frequency index of the reference selected
0x15				by register Ref Infor Selector
0x16	Ref Activity 1	2-0	R	Reference activity for reference 1 to 12 and Xref
0x17	_ ,			,
0x18	Ref_Qual	11-0	R	Reference 1 ~ 12 qualification
0x19				
0x1a	Interrupt_Event_Status	7-0	R/W	Interrupt events
0x1b	Interrupt_Enable	7-0	R/W	Selects which of interrupt events will assert pin EVENT_INTR
0x1c	Interrupt_Config	1-0	R/W	Pin EVENT_INTR configuration and idle mode
0x1d	Fast_Switch_Pre_Selections	7-0	R/W	Pre-selected reference number 1 and reference number 2 for
				fast manual switch mode
0x1e	Reserved			
0x1f	T0/T4_Tag_Select	0	R/W	Selects registers 0x20-0x3f mapping to T0 or T4 control registers
0x20	Control_Mode	7-0	R/W	Mode of Holdover, Revertive, Manual/Auto, OOP, SRCSW
0x21	Loop_Bandwidth	7-0	R/W	Loop bandwidth selection
0x22	Auto_Select_Ref	3-0	R	Indicates the reference elected by auto reference elector
0x23	Manual_Select_Ref	3-0	R	The reference specified by users for manual selection mode
0x24	Active_Ref	3-0	R	Indicates the PLL current selected reference
0x25	Device_Holdover_History	31-0	R	Device Holdover History
0x26				
0x27				
0x28		04.0		
0x29	Long_Ierm_Accu-History	31.0	K	Long Term Accumulated History
0x2a				
0x20				
0x2d	Short Term Accu-History	31_0	R	Short term Accumulated History
0x2e	Short_term_Accu-matory	01-0		Short term Accumulated History
0x2f				
0x30				
0x31	User_Specified History	31.0	R/W	User programmed holdover history
0x32				
0x33				
0x34				

STC5420 Register Map continued

Table 2: Register Map continued

Addr	Reg Name	Bits	Туре	Description	
0x35	History_Ramp	7-0	R/W	Control long term history and short term history accumulation	
				band-width and the locking stage's frequency ramp control.	
0x36	Ref_Priority_Table	47-0	R/W	REF1-12 selection priority	
0x37					
0x38					
0x39					
0x3a					
0x3b					
0x3C	PLL_Status	7-0	R	PLL status: SYNC, LOS, LOL, OOP, SAP, FEE, DHT, HHA	
0x3D	Holdover_Accu_Flush	0	W	Flush/reset the long-term history and the device holdover history	
0x3E	PLL_Event_Out	7-0	R/W	PLL event out (Reserved)	
0x3F	PLL_Event_In	7-0	R/W	PLL event in: Relock	
0x40	EX_SYNC_Edge_Config	0	R/W	Select framing edge for EX_SYNC (falling or rising edge)	
0x41	Slave_Frame_Align	3-0	R/W	Select cross ref source and frame edge for slave T0 timing generator	
0x42	Master_Frame_Align	47-0	R/W	T0 timing generator selects the frame phase alignment and	
				frame alignment working manner in master mode. Not for	
0.40				14 timing generator.	
0x43					
0x44					
0x45 0x46					
0x40					
0x47	Synth Inday Salaat	2.0		Determine which synthesizer is selected for setting frequency	
0x4A	Synth_Index_Select	3-0		value at register Synth Freq. Value and adjusting phase skew at	
				registers Synth Skew Adi	
0x4B	Synth Freq Value	17-0	R/W	Selects synthesizer frequency value from 1MHz to 156 25MHz in	
0x4C	oynth_rieq_value	17.0	11/00	1kHz steps, based on which synthesizer index is selected at the	
Ox4D				register Synth Index Select	
0x4F	Synth Skew Adi	11-0	R/W	Adjust phase skew for the synthesizer with the index selected at	
0x4F				register Synth_Index_Select	
0x50	CLK1/2 Signal Level	1-0	R/W	Select the signal level (LVDS or LVPECL) for clock outputs CLK1	
				and CLK2	
0x51	CLK1_Sel	1-0	R/W	Select synthesizer or enable tri-state for CLK1	
0x52	CLK2_Sel	1-0	R/W	Select synthesizer or enable tri-state for CLK2	
0x53	CLK3_Sel	1-0	R/W	Select synthesizer or enable tri-state for CLK3	
0x54	CLK4_Sel	1-0	R/W	Select synthesizer or enable tri-state for CLK4	
0x55	CLK5_Sel	1-0	R/W	Select synthesizer or enable tri-state for CLK5	
0x56	CLK6_Sel	1-0	R/W	Select synthesizer or enable tri-state for CLK6	
0x57	CLK7_Sel	1-0	R/W	Select synthesizer or enable tri-state for CLK7	
0x58	CLK8_Sel	1-0	R/W	Select synthesizer or enable tri-state for CLK8	
0x59	Frame8K_Sel	6-0	R/W	8kHz frame pulse clock duty cycle selection, signal inversion	
0x5A	Frame2K_Sel	6-0	R/W	2kHz frame pulse clock duty cycle selection, signal inversion	
0x5B	Ref_Acceptable_Freq	14-0	R/W	Select integer N for manually acceptable frequency at Nx8kHz;	
0x5C				Enable auto detection of reference input frequency	
0x5D	Frame_Mux	11-0	R/W	Select one of frame signal (Frame8K, Frame2K, or composite	
0x5E				signal) and forward it to CLK3~CLK8 selection individually	
0x5F	Diff_REF_Polarity	1-0	R/W	Differential input REF(11~12)_P and REF(11~12)_N polarity reverse	
0x70	Field_Upgrade_Status	2-0	R	Indicates the status of field upgrade process	
0x71	Field_Upgrade_Data	7-0	R/W	Load 7600 bytes of firmware configuration data	
0x72	Field_Upgrade_Count	12-0	R	Count byte numbers that have been loaded	
0x73					
0x74	Field_Upgrade_Start	7-0	W	Write three values consecutively to start the field upgrade process	
0x7F	MCLK_Freq_Reset	7-0	R/W	Select the frequency of the external oscillator	

Note 1: Timing generator T0 and T4 share register 0x20 ~ 0x3F. Register 0x1F selects between T0 and T4 for the sharing registers 0x20 ~ 0x3F.

Master Clock Frequency

The STC5420 supports four different frequencies of master clock: 10MHz, 12.8MHz, 19.2MHz, and 20MHz. See Chip Master Clock for details. Initial default accepted frequency of MCLK is 12.8MHz.

12.8MHz (Initial default frequency)					
10MHz					
19.2MHz					
20MHz					
Table 3: Master Clock Frequency					

Input and Output Frequencies

Input Frequencies

Auto-Detect Acceptable Input Frequencies

The STC5420 can automatically detect the frequency of the reference input when the user enable the auto-detect function at the register Ref Index Selector and Ref Acceptable Freq for REF1~REF12 individually. REF11 and REF12 are LVPECL/LVDS. The acceptable frequency for auto detection is shown below.

Reference Input	Frequency
	8 kHz
	64 kHz
	19.44 MHz
	38.88 MHz
	77.76 MHz
	1.544 MHz
REF1 ~ REF 12	2.048 MHz
	6.48 MHz
	8.192 MHz
	16.384 MHz
	25 MHz
	50 MHz
	125 MHz
REF72	Proprietary Composite signal
EX_SYNC ³	Proprietary Composite signal,
	2kHz or 8kHz external frame sync inputs

Table 4: Auto-Detect Acceptable Ref Input Frequencies

Manually Acceptable Input Frequencies

STC5420 provides another option which allows the user to select the manually acceptable reference frequency for REF1~REF12 individually, at the integer multiple of 8kHz (Nx8kHz, N is integer from 1 to 32767). Hence the manually acceptable reference frequency range is 8kHz to 262.136MHz, in 8kHz steps. When a manually acceptable reference frequency is used, the user need to access the register Ref Acceptable Freq to set the integer N for associated reference input selected at the register Ref Index Selector.

Input Frequency = $N \times 8kHz$, where $N = 1 \sim 32767$

Note 2: In slave mode configuration, REF7 can also accept proprietary composite signal as input besides the high frequencies shown in Figure 3. Note 3: In both master and slave mode configuration, EX_SYNC may accept proprietary composite signal and 2kHz or 8kHz external frame reference inputs.

Clock Output Frequencies

CLK	CLK Level	Synthesizer	Clock Output Frequency Range	
CLK1	LVPECL/LVDS	S G ₁ 1MHz ~ 156.25MHz, in 1kHz steps		
CLK2	LVPECL/LVDS	G ₂	1MHz ~ 156.25MHz, in 1kHz steps	
CLK8K	LVCMOS	F	Frame8K at 8kHz	
CLK2K		F	Frame 2K at 2kHz	
CLK3	LVCMOS	G_3 , F or G_{T4}	1MHz ~ 156.25MHz, in 1kHz steps; Frame8K/Frame2K at 8kHz/2kHz	
CLK4	LVCMOS	G_4 , F or G_{T4}	1MHz ~ 156.25MHz, in 1kHz steps; Frame8K/Frame2K at 8kHz/2kHz	
CLK5	LVCMOS	G_5 , F or G_{T4}	1MHz ~ 156.25MHz, in 1kHz steps; Frame8K/Frame2K at 8kHz/2kHz	
CLK6	LVCMOS	G_6 , F or G_{T4}	1MHz ~ 156.25MHz, in 1kHz steps; Frame8K/Frame2K at 8kHz/2kHz	
CLK7	LVCMOS	G_7 , F or G_{T4}	1MHz ~ 156.25MHz, in 1kHz steps; Frame8K/Frame2K at 8kHz/2kHz	
CLK8	LVCMOS	G_8 , F or G_{T4}	1MHz ~ 156.25MHz, in 1kHz steps; Frame8K/Frame2K at 8kHz/2kHz	

Table 5: Available Clock Output Frequencies

Clock Output Jitter

Clock Output	Frequency (Typical)	RMS jitter ⁴	pk-pk jitter ⁴ (10-12) (Typical)	
	(MHz)	(ps)	(ps)	(UI)
	156.25	13	210	0.03
	155.52	13	210	0.03
	125	13	210	0.03
	77.76	13	210	0.02
	77.76	19	330	0.03
	38.88	16.5	280	0.01
(LVCMOS)	19.44	15	230	0.005
	25	13	180	0.005
	2.048	11	180	0.0004
	1.544	11	160	0.0003

Note: Filter bandwidth is from 12kHz to Frequency/2

Table 6: Clock Output Jitter

General Description

Application

The STC5420 is a single chip solution for the synchronous clock in SDH (SETS), SONET, and Synchronous Ethernet network elements. The device is fully compliant with ITU-T G.813 (option1 and option2), G.8262 EEC (option1 and option2), Telcordia GR1244, and GR253 (Stratum3/4E/4/SMC). Its highly integrated design implements all necessary reference selection, monitoring, filtering, synthesis, and control functions. An external oscillator (e.g., high precision OCXO or TCXO) completes a system level solution (see Functional Block Diagram, Figure 1). The STC5420 has four programmable frequency options of external oscillator. The STC5420 supports master/slave and multiple-master operations for redundant application.

Overview

The STC5420 accepts 12 reference inputs and generates 10 synchronized clock outputs, including 2 frame pulse clock outputs CLK8K and CLK2K at 8kHz and 2kHz. Two independent PLL-based timing generators, T0 and T4, provide the essential functions for Synchronous Equipment Timing Sources (SETS). T0 controls synthesizers G1~G8, and synthesizer F. T4 controls synthesizer GT4. Clock outputs CLK1~CLK8 can be derived from synthesizer G1~G8, respectively. CLK3~CLK8 can also be derived from synthesizer F through T0 path or synthesizer GT4 through T4 path. Frame pulse clock outputs are derived from synthesizer F. The STC5420 incorporates a microprocessor interface, which can be configured for all common microprocessor interface types.

Chip Master Clock

The STC5420 operates with an external oscillator (e.g., OCXO or TCXO) as its master clock. The device supports four different frequencies of master clock: 10MHz, 12.8MHz, 19.2MHz, and 20MHz. Initial default accepted frequency is 12.8MHz.

Reference Inputs

The STC5420 accepts 12 reference inputs. REF11 and REF12 are LVPECL/LVDS, remaining 10 are LVCMOS. The 12 reference inputs are continuously activity and quality monitored. The reference inputs may be selected to accept either the auto-detect acceptable reference frequency which can be automatically detected by STC5420 or manually acceptable reference frequency. The activity monitoring is implemented with a programmable leaky bucket algorithm.

A reference is designated as "qualified" if it is active and its fractional frequency offset is within the programmed range for a programmed soaking time. An auto reference elector elects the most appropriate one from the reference inputs according to the revertivity status, and each reference's priority and qualification. Revertivity determines whether a higher priority qualified reference should preempt a qualified current auto-elected reference. If none of the references input is qualified, holdover or freerun mode will be elected depending on the availability of the holdover history.

Reference selection may be automatic, manual, or hard-wired manual. In automatic reference selection mode, the most appropriate one elected from the auto reference elector will be the selected reference input. In manual reference selection mode, user may specify any of the reference inputs as the selected reference input for external timing or holdover/freerun for self-timing. In hard-wired manual mode, user can fast switch using control pin SRCSW between two pre-programmed reference inputs. The reference input elected from the auto reference elector will not affect the selected reference input in manual or hard-wired manual mode.

In manual reference selection mode, the timing generator T4 may accept T0's synchronized output as its input.

Timing Generators and Operation Modes

The STC5420 includes two independent timing gen-erates, T0 and T4, to provide the essential functions for SETS. Each timing generator can individually operate in Freerun, Synchronized, Pseudo-Holdover and Holdover mode. A timing generator is in either external-timing mode or self-timing mode. In external timing mode, PLL of the timing generator phase locks to the selected external reference input. In self-timing mode, the PLL simply tunes the clock synthesizers to a given fractional frequency offset. Synchronized mode is in external timing. PLL's loop bandwidth may be programmed individually to vary the timing generator's filtering function. Conversely, freerun, pseudo-holdover and holdover modes are all in self-timing. When selected reference input and previous holdover history are unavailable, such as in system's initialization stage, freerun mode may be entered or used. When selected reference input is unavailable but a long-term holdover history accumulated in previous synchronized mode is available, holdover mode may be entered or used. STC5420 may enter pseudo-holdover using short-term frequency history. In STC5420, the freerun clock is derived from the MCLK (external oscillator) and digitally calibrated to compensate the external oscillator's accuracy offset. STC5420 also allow users to program and manipulate the holdover history accumulators.

General Description continued...

Phase Synchronization

In synchronized mode, the phase relationship between the selected reference input and the clock output may be phase arbitrary or frame phase align for T0 timing generator. For timing generator T4, the phase relationship is only phase arbitrary. Zero frame phase relationship is produced for T0 timing generator tor by programming as frame phase align mode. Switching to a new reference input may expect a longer pull-in process in this mode. On the other hand, programming as arbitrary mode, an arbitrary phase relationship incorporates phase rebuild on reference input switching to minimize the downstream clock's phase transient. In this scenario, the STC5420 can provide hit-less switching if both reference inputs are traced to the same clock source (e.g., PRC). The STC5420 may accept external frame reference to achieve frame alignment in frame phase align mode. The frame reference and the frame edge, and frame phase alignment mode may be configured indepen- dently for each individual reference input.

A maximum frequency ramp may be programmed to minimize the ramp of fractional frequency offset changing in the case that the new selected reference is not traced to the same source. This feature restrains the frequency transient which may cause the pull-out-of-lock of the downstream network elements.

Clock Outputs

The STC5420 outputs 10 synchronized clock outputs: 2 differential clock outputs (LVPECL or LVDS) CLK1 and CLK2, 6 LVCMOS clock outputs CLK3 to CLK8 (LVCMOS), one CLK8K and one CLK2K frame pulse clock outputs (LVCMOS). CLK1~CLK8 can be derived from synthesizer G1~G8 through T0 path, respectively, in which CLK3~CLK8 can also be derived from synthesizer F through T0 path or synthesizer GT4 through T4 path. See Figure 1 for functional details. Frequency of clock outputs CLK1~CLK8 is programmable by programing frequency of the associated synthesizer from 1MHz up to 156.25MHz, in 1kHz steps. Each of the synthesizers has different default frequency value. The STC5420 allows the user to program the phase skew of each clock synthesizer, up and down 50ns in roughly 0.024ns step to adjust the phase of clock outputs.

Frame pulse clock synthesizer F generates frame pulse clock Frame8K/Frame2K at frequency of 8kHz/2kHz and a proprietary composite signal which carries 8kHz clock, 2kHz frame, and the selected reference information. The duty-cycle of Frame8K and Frame2K is programmable. Clock outputs CLK8K and CLK2K are directly driven from Fram8K and Frame2K.

Redundant Designs

Timing generator T0 supports master/slave and multiple-master operation for redundant applications to allow system protection against the failure of the single unit.

In master/slave configuration, the slave unit phase- locks and frame aligns (8kHz or 2kHz) to the cross- reference from the master unit, using highest avail- able loop bandwidth and ignores any frequency ramp protection. The phase of slave's clock outputs may be adjusted up and down 3.2us, in 0.1ns step, to compensate for the propagation and re-transmission delay of the cross-couple path. This will then mini- mize the phase hits to the downstream devices result- ing from master/slave switches.

In multiple-master configuration, all units work as masters and lock to the same reference input in paral-lel. With the help of frame phase align mode and the extra frame edge, clock outputs of all the units may keep in frame phase alignment. No phase compensa-tion as in master/slave configuration. In order to meet same synchronization requirement, each unit should use same parameter setup including loop bandwidth. Multiple-master configuration demands a high quality external oscillator to obtain a precise frame phase alignment.

Control Interfaces

The STC5420's controls interfaces are composed of hardwire control pins and the bus interface. They provide application access to the STC5420's internal control and status registers. This bus interface may be configured among four type of micro-controller interfaces, three of them are in parallel (Intel, Motorola, Multiplexed) and one in serial (SPI). The selection of the bus interface is pin-controlled.

Field Upgradability

The STC5420 supports Field Upgradability which allows the user to load size of 7600 byte firmware configuration data (provided as per request) via bus interface. It provides the user a flexible field solution for different applications.

Advantage and Performance

The kernel of each timing generator is a DSP-based PLL. In STC5420, all internal modules are either digi- tal or numerical, including the phase detectors, filters, and clock synthesizers. The revolutionary pure-digital design makes the timing generator become an accu- rate and reliable deterministic system. This modern technology removes any external component except the external oscillator. It provides excellent performance and reliability to STC5420. A well-chosen oscillator will make STC5420 meet all the synchronization requirements. Short-term stability associated with the desired loop bandwidth is a more important factor than aging projection and thermal response when select an appropriate oscillator.

Detailed Description

The STC5420 is a single chip solution for the syn- chronous clock in SDH (SETS), SONET, and Syn- chronous Ethernet network elements. The revolutionary pure-digital internal modules, DSP-based PLL and clock synthesizer are used in the device so that the overall characteristics are more stable compared to traditional method.

Chip Master Clock

The device operates with an external oscillator (e.g., OCXO or TCXO) as its master clock, connected to the MCLK input, pin 10. Generally, user should select an oscillator has great stability and low phase noise as the master clock (MCLK).

The STC5420 supports four different accepted frequencies of master clock: 10MHz, 12.8MHz, 19.2MHz, and 20MHz. Initial default accepted frequency of MCLK for STC5420 is 12.8MHz. When 10MHz, 19.2MHz, or 20MHz is selected as the frequency of MCLK, the user must write register MCLK Freq Reset three times consecutively, with no intervening read/writes from/to other register. An internal soft-reset will occur after three writes completed. The accepted frequency of MCLK input returns to 12.8MHz following any regular reset. See register MCLK Freq Reset for details.

In the meantime, the STC5420 allows user to read three values at the register MCLK Freq Reset: FRQID, COUNT, and ID Written Value. **FRQID:** Indicates the ID of the frequency of MCLK that the STC5420 currently accept.

COUNT: Indicates how many times the register MCLK Freq Reset has been written to.

ID Written Value: Indicates the ID of associated value that is being written to the register MCLK Freq Reset.

See the register MCLK Freq Reset for more details.

Freerun Clock

The STC5420 has an internal freerun clock synthesized from the MCLK. The frequency offset of the internal freerun clock can be calibrated by writing to the register Freerun Cali. It has the stability of the external TCXO/OCXO. The calibration offset may be programmed in 0.1ppm steps from -102.4 to +102.3ppm, in 2's complement. This feature allow the user can digitally calibrate the freerun clock without physically adjusting the local oscillator.

Operation Mode

The STC5420 includes two timing generators, T0 and T4 timing generators. Each timing generator has its own PLL and can be individually operate in either external-timing or self-timing mode. In external timing mode, PLL of a timing generator phase-locks to a reference input. In self-timing mode, PLL simply operates with the external oscillator (MCLK). The STC5420 supports four operation modes: freerun (self-timing), synchronized (external-timing), pseudo-holdover (self-timing) and holdover (self-timing).

Freerun Mode

Freerun mode is typically used during system's initialization stage when none of reference inputs is avail- able and the clock synchronization has not been achieved. The clock output generated from the STC5420 in freerun mode is based on the internal freerun clock which is synthesized from MCLK. Frequency of the internal freerun clock can be calibrated by writing to the register Freerun Cali.

Synchronized Mode

In synchronized mode, the built-in PLL of the timing generator locks to the selected reference input. Each timing generator's loop bandwidth is independently programmable from 0.1Hz to 100Hz by writing to the register Loop Bandwidth. The noise transfer function of the PLL is determined accordingly by the loop bandwidth and has maximum gain under 0.2dB. In synchronized mode, the phase relationship between the reference input and the clock output can be con- figured as arbitrary or aligned for timing generator T0 at register Master Frame Align. Timing generator T4 operates only in phase arbitrary.

Pseudo-Holdover Mode

In pseudo-holdover mode, the clock is synthesized from the MCLK and an accumulated short-term history. This history is accumulated by a built in programmable short-term history accumulator consecutively, which presents the latest updated fractional frequency offset of the synchronous clock output of each timing generator. The user can read the short-term history from register **Short Term Accu History**.

Holdover Mode

Holdover mode is typically used when none of reference inputs is available and the holdover history has been built. In holdover mode, the frequency offset of the clock output is maintained closely to previous value generated when the selected reference input was valid. User can select either device holdover history or user specified holdover history at the register **Control Mode** in holdover mode.

PLL Event In

The STC5420 provides direct communication with the PLL's timing generator by writing to the register PLL Event In. Following events can be triggered:

-Relock. PLL starts a relock process if this event is triggered. In frame phase align mode, PLL relocks to the ref-erence input and the frame edge is re-selected as well. In phase arbitrary mode, PLL relocks to the reference input and restart the phase rebuild process.

Frequency and Phase Transients

Severe frequency and phase transients of the clock output will cause lost of lock or buffer overflow/under- flow on downstream circuit. By providing programmable maximum slew rate and phase rebuild function, both frequency and phase transient of the STC5420's clock output is controlled to minimize the impact on downstream circuits.

Frequency Transients

The STC5420 smoothly control the frequency tran- sient on the clock output. During reference input switching or operation mode switching (etc., switch to freerun or holdover mode), if the clock output prior to switching has different frequency offset than the desired clock output, it smoothly approaches to desired frequency offset with a maximum acceleration/decel- eration rate by writing to the register History Ramp. The maximum slew rate can be programmed as 1.0, 1.5, 2.0 ppm/second. With a limited acceleration/ deceleration, the pull-in process may last longer. However, it will minimize the frequency transient impact to the downstream clock and ensure meeting components frequency impact tolerance.

Phase Transients

The STC5420 minimize the variation of the phase transient on the clock output when a phase hit occurs on the selected reference input. The overshoot in the clock output's phase transient response will be a small amount under 2%.

During reference input switching or recovering from LOS/LOL condition, the phase transient is also occurred on the clock output. The STC5420 can minimize it with a phase rebuild function. In synchronized mode, the phase relationship between the reference input and the clock output can be programmed to phase arbitrary or frame phase align at the register **Master Frame Align**. If phase arbitrary is selected, a phase rebuild function is performed before locking to the new/recovered reference input. Hit-less switching is achieved with this function and the phase hit to downstream circuits is eliminated. If frame phase align is selected, the clock output is in frame phase alignment with the reference input. Only T0 timing generator supports frame phase alignment.

History of Fractional Frequency Offset

The STC5420 monitors and tracks the fractional frequency offset between the clock output and MCLK. The history data of the frequency offset is used by clock synthesizers to generate desire outputs while the timing generator is pending for reference input availability. Two weighted 3rd order low-pass filter are used internally as two history accumulators: the short term history accumulator and the long term history accumulator. A mature long term history is stored and further updated as device holdover history. It is used when the STC5420 operates in holdover mode. In addition, the STC5420 allows user to program an user specified history as needed of the application.

Short-Term History

Short-term history is an average frequency offset between the clock output and MCLK which is filtered internally using a weighted 3rd order low-pass filter with the small time constant. The -3dB filter response point can be programmed from 0.16Hz to 1.3Hz by writing to the register History Ramp register. Short-term history can be read from the register Short_Term_Accu_History. Typically, short-term history is used by clock synthesizer in two conditions: First, it is used in between the transition of two different operation modes; second, it is used if LOS occurs when the STC5420 operates in synchronized mode with manually reference selection. In addition, short-term history is provided to perform failure diagnostics and evaluations.

Long-Term History

Long-term history is an average frequency offset between the clock output and MCLK which is filtered internally using a weighted 3rd order low-pass filter with the long time constant. The -3 dB filter response point can be programmed from 0.15mHz to 1.3Hz by writing to the register History Ramp. The history value can be read from the register Long Term Accu History.

Device Holdover History

Device holdover history is the history data used when the STC5420 runs in holdover mode. It is acquired from the long term history previously described. In synchronized mode, when timing generators PLL has locked to the selected reference input for over 15 minutes, the long term history is stored and further updated as the device holdover history. If LOS or LOL occurs, the device holdover history will stay at the lat- est updated value until re-enter the synchronized mode and the PLL locks to the replaced selected reference input for another 15 minutes. Set Bit HO_Usage bit of the register Control Mode to select using device holdover history. Its value can be read from the register Device Holdover History.

User-Specified History

The STC5420 allows user to provide the history data created from their own sophisticated history accumu- lation algorithms by writing to the register User Spec- ified History. Set bit HO_Usage of the register Control Mode to select using user specified holdover history. Its value can be read from the register User Specified History.

Phase-Locked Loop Status Details

The register PLL Status contains the detailed status of the PLLs, including the signal activity of the selected reference, the synchronization status, and the availability of the holdover histories.

SYNC bit

In external-timing mode, this bit indicates the achievement of synchronization. This bit will not be asserted in self-timing mode.

LOS bit

In external-timing mode, this bit indicates the loss of signal on the selected reference. This bit will not be asserted in self-timing mode.

LOL bit

In external-timing mode, the bit will be set if the PLL fails to achieve or maintain lock to the selected reference. This bit will not be asserted in self-timing mode. It is also not complementary to the SYNC bit. Both bits will not be asserted when the PLL is in the pull-in process. The pull-in process usually occur when switch to a new selected reference or recover from the LOS/LOL.

OOP bit

This bit indicates that the selected reference is out of the pull-in range. This is meaningful only if in external-timing mode. This bit will not be asserted in self-timing mode. The frequency offset is relative to the digitally calibrated freerun clock.

SAP bit

This bit when set indicates that the PLL's output clocks have stopped following the selected reference because the frequency offset of the selected reference is out of pull-in range (OOP). User can write to the Control Mode register to program whether the PLL shall follow the selected reference outside of the specified pull-in range or just stay within the pull-in range boundary.

FEE bit

This bit indicates whether an error occurs in the frame edge detection process in slave mode or master phase align mode. For timing generator T0 only.

DHT bit

This bit indicates whether the device holdover history is tracking on the current selected reference (updating by the long-term history).

HHA bit

This bit indicates the availability of the holdover history, which may be either the user provided history or the device holdover history.

Reference Inputs Details

The STC5420 accepts 12 external reference inputs. The reference inputs may be selected to accept either the auto-detect acceptable reference frequency which can be automatically detected by STC5420 or manually acceptable reference frequency. Reference inputs REF11 and REF12 are LVPECL/LVDS and the remaining ten are LVCMOS. Signal polarity of REF11 and REF12 is reversible at the register Diff Ref Polarity. All 12 reference inputs are monitored continuously for frequency, activity and quality. Each timing generator may select any of the reference inputs when the device is in external timing mode. T4 may accept T0's output as its input via internal feedback path.

Acceptable Frequency and Frequency Offset Detection

The STC5420 can automatically detect the frequency of the reference input when the user enable the auto-detection function at the register Ref Index Selector and Ref Acceptable Freq. The acceptable auto-detect frequencies are: 8kHz, 64kHz, 1.544MHz, 2.048MHz, 19.44MHz, 38.88MHz, 77.76MHz, 6.48MHz, 8.192MHz, 16.384MHz, 25MHz, 50MHz or 125MHz. These frequencies can be automatic detected continuously in the detector. Any carrier frequency change will be detected within 1ms. Each input is also monitored for frequency offset between input and the internal freerun clock. The frequency offset is a key factor to determine qualification of the reference inputs. See register Ref Index Selector and Ref Info.

STC5420 provides another option which allows the user to select the manually acceptable reference frequency for all the reference inputs, at the integer multiple of 8kHz (Nx8kHz, N is integer from 1 to 32767). Hence the manually acceptable reference frequency range is integer multiple of 8kHz from 8kHz to 262.136MHz. When a manually acceptable reference frequency is used, the user need to access the register Ref Acceptable Freq to set the integer N for the reference input which is selected at the register Ref Index Selector. Each input is monitored for frequency offset between input and the internal freerun clock. The frequency offset is shown in the register Ref Info when associate reference index is selected at the register Ref Index Selector.

Activity Monitoring

Activity monitoring is also a continuous process which is used to identify if the reference input is in normal. It is accomplished with a leaky bucket accumulation algorithm, as shown in Figure 2. The "leaky bucket" accumulator has a fill observation window that may be set from 1 to 16ms, where any hit of signal abnormality (or multiple hits) during the window increments the bucket count by one. The leak observation window is 1 to 16 times the fill observation window. The leaky bucket accumulator decrements by one for each leak observation window that passes with no signal abnormality. Both windows operate in a consecutive, non-overlapping manner. The bucket accumulator has alarm assert and alarm de-assert thresholds that can each be programmed from 1 to 64.

Figure 3: Activity Monitor

Applications can write to the following registers to configure the activity monitor: Fill Obs Window, Leak Obs Window, Bucket Size, Assert Threshold, and De Assert Threshold.

Setting the bucket size to 0 will bypass the leak bucket accumulator and assert or de-assert the activity alarm based on results of frequency detector and pulse monitor only. A non-zero bucket size must be greater than or equal to the alarm assert threshold value. The alarm assert threshold value must be greater than the alarm de-assert threshold value and less than or equal to the bucket size value. Attempted writes of invalid values will be ignored. Therefore, user must carefully plan an appropriate sequence of writes when re-configure the activity monitor. See register Bucket Size, Assert Threshold and De Assert Threshold for details.

Alarms appear in the Refs Activity register. A "1" indicates activity, and a "0" indicates an alarm, no activity. Note that if a reference is detected as a different frequency, the leaky bucket accumulator is set to the bucket size value and the reference will become inactive immediately.

Input Qualification

A selected reference is "qualified" if it passes the activity evaluation and its frequency offset is within the programmed qualification range for over a pre-programmed soaking time.

A reference qualification range may be programmed up to 102.3 ppm by writing to register Qualification Range, and a disqualification range set up to 102.3 ppm, by writing to register Disqualification Range. The qualification range must be set less than the disqualification range. Additionally, qualification soaking time may be programmed from 0 to 63 seconds by writing to register Qualification Soaking Time. The pull-in range is the same as the disqualification range.

The frequency offset of each reference is relative to the internal freerun clock may be read by selecting the reference in the Ref Index Selector register and then reading the offset value from register Ref Info.

The frequency offset of the internal freerun clock can be calibrated by writing to the register Freerun Cali.

Figure 3 shows the reference qualification scheme. A reference is qualified if it has no activity alarm and is continuous within the qualification range for more than the qualification soaking time. An activity alarm or frequency offset beyond the disqualification range will disqualify the reference. It may then be re-qualified if the activity alarm is off and the reference is within the qualification range for more than the qualification time.

The reference qualification status of each reference may be read from register Ref Qual.

Automatic Reference Election Mechanism

The STC5420 has an auto reference elector always elect the best candidate from the reference inputs according to the revertivity status, each reference's priority and qualification. T0 and T4 have independent priority tables for automatic reference selection. Regardless what the current reference selection mode is (automatic, manual, or hard-wired manual), the auto reference elector always work in this mechanism. The detail description of the reference selection mode is in following sections.

Out of Disqualification Range

Figure 4: Reference Qualification Scheme

The reference priority is indicated in the reference priority table which is shown in register Ref Priority Table individually for each timing generator. Each reference has one entry in the table, which may be set to value from 0 to 15. '0' revokes the reference from the election, while 1 to 15 set the priority, where '1' has the highest, and '15' has the lowest priority. The highest priority pre-qualified reference then is a candidate selected by the automatic reference elector. If multiple references share the same priority, the one that has been qualified for the longest time will be recommended to be the candidate. If the current highest priority reference input fails, the next-highest priority reference is selected as the candidate.

In order to avoid disturbance of the clock output, the candidate reference selected by automatic reference elector should be handled in two different mode. Revertive mode and non-revertive mode. The mode is determined by either enabling or disabling the "revertive" bit of the Control Mode to "1" for revertive or to "0" for non-revertive operation.

In revertive mode, the automatic reference elector will pre-empted the current candidate reference if the new recommended candidate reference has higher priority.

Delivering a New Generation of Time and Frequency Solutions for a Connected World. STC5420 Data Sheet: TM112 Page 17 Rev: 02 Date: 09/28/2011

Automatic Reference Election Mechanism continued

In non-revertive mode, the current candidate reference will not be preempted by any new candidate until it is disqualified.

If there is no candidate reference available, freerun or holdover will be recommended by the automatic reference elector depending on the holdover history availability.

Figure 4 shows the operation states for automatic reference elector.

Automatic Reference Selection

The T0 and T4 timing generators may be individually operated automatic reference input selection mode. The mode is selected via the Control Mode registers.

In automatic reference selection mode, the selected reference is the same reference elected by the automatic reference elector. The automatically selected reference for each PLL may be read from the Auto Elect Ref registers.

Figure 5: Automatic Reference Elector States

Manual Reference Selection Mode

In manual reference selection mode, the user may select the reference manually. This mode is selected via the Control Mode registers. The reference is selected by writing to the Manual Select Ref registers. The user may also has the device enter freerun or holdover manually by writing to the Manual Select Ref registers. Besides, T4 may select T0's output as the selected reference

Hard-wired Manual Reference Selection

Besides the manual reference selection mode, the STC5420 provides a special mode to switch between two pre-selected reference directly from a dedicated pin SRCSW. The two pre-selected references are configured at the register Hard Wired Switch Pre Selection. It can make the device enter the freerun or holdover by writing to the register Hard Wired Switch Pre Selection. In this mode, the pin SRCSW operates as a simple switch by setting high or low. Hard-wired Manual Reference Selection is for T0 only.

Clock Outputs Details

The STC5420 generates 2 synchronized differential (LVPECL or LVDS) clock outputs: CLK1 and CLK2; 6 LVCMOS clock outputs: CLK3~CLK8; frame pulse clock outputs CLK8K and CLK2K. Figure 5, Figure 6, and Figure 7 respectively shows the clock output section for CLK1/CLK2, CLK8K/CLK2K, and CLK3~CLK8. Each output has individual clock output section consist of a synthesizer and a clock generator. Clock generator of CLK1 or CLK2 has a LVPECL/LVDS driver to produce differential output. Each generator of CLK3~CLK8 includes two muxes and a LVCMOS signal driver. Generator of frame output CLK8K and CLK2K consist of a LVCMOS driver.

Clock Synthesizers

The STC5420 has 10 clock synthesizers, which of 9 is disciplined by the timing generator T0: synthesizer G1~G8 and one frame pulse clock synthesizer F; T4 disciplines a clock synthesizer GT4. Clock synthesizers G1~G8 produce frequencies from 1MHz to 156.25MHz, in 1kHz steps. Phase skew of these synthesizers are all programmable individually up and down 50ns at the register Synth Index Select and Synth Skew Adj. CLK1 and CLK2 are derived from synthesizer G1 and G2. CLK3 ~ CLK8 can be derived from synthesizer G3~G8, also can be derived from synthesizer F or from synthesizer GT4 respectively. Synthesizer F produces frame pulse clock Frame8K, Frame2K, and a proprietary composite signal. Synthesizer F has two independent duty cycle controller for Frame8K and Frame2K which can program pulse width at the register Frame8K Sel and Frame2K Sel. Proprietary composite signal is a 3.3V LVCMOS data signal carries 8kHz clock, 2kHz frame, and the selected reference information.

Clock Generators

Clock generator of CLK1 or CLK2 consist of a LVPECL/LVDS signal driver. The signal level of clock outputs CLK1 and CLK2 can be programmed to either LVPECL or LVDS at the register CLK1/2 Signal Level. Clock generators of CLK3~CLK8 consist of a Frame Mux, CLK Sel Mux and a LVCMOS driver. CLK Sel Mux determines which synthesizer is selected for generator to output clock. When synthesizer F is selected, Frame Mux selects one of frame clocks (Frame8K, Frame2K, and proprietary composite signal) derived from synthesizer F and forward it to CLK Sel Mux for frame signal selection of CLK3~CLK8 individually. Frame Mux is set at the register Frame Mux and the CLK(3~8) Sel Mux is set at the register SCLK(3~8) Sel for CLK3 ~ CLK8 individually. Signal level of CLK3~CLK8 is driven from LVCMOS driver in clock generator.

The clock generator of CLK8K and CLK2K contains a LVCMOS driver. Clock outputs CLK8K and CLK2K output Frame8K and Frame2K clock pulse clock. The duty cycle is programmable at the register Frame8K Sel and Frame2K Sel.

STC5420 Data Sheet: TM112 Page 18 Rev: 02 Date: 09/28/2011

Clock Output Details continued...

Clock Output Phase Alignment

Any of clock outputs (except those derived from syn- thesizer GT4) which has frequency at the integer multiple of 8kHz is in phase alignment with the frame pulse output CLK8K if none of synthesizer skew is programmed.

Synthesizer Skew Programming

The STC5420 allows user to program the phase skew of each clock synthesizer, up and down 50ns in roughly 0.024ns steps. Since each of clock outputs is dedicate derived from its synthesizer respectively, adjust phase skew of the synthesizer will provide the associated clock output a phase skew adjustment. Phase skew of the 10 synthesizers may be programmed at the register Synth Index Select and Synth Skew Adj.

Clock Outputs

CLK1 or CLK2 is selected when associated synthesizer G1 or G2 is selected at the register CLK1 Sel or CLK2 Sel. Output frequencies or phase skew of CLK1 and CLK2 are programmable when frequency or skew of the associated synthesizer is programmed at the register Synth Index Select, Synth Freq Value, and Synth Skew Adj. Output frequency is programmable from 1MHz to 156.25MHz, in 1kHz steps.

CLK3~CLK8 is selected when associated synthesizer G3~G8, or GT4 is selected at the register CLK(3~8) Sel. Output frequencies or phase skew of CLK3~CLK8 are programmable when frequency or skew of the associated synthesizer is programmed at the register Synth Index Select, Synth Freq Value, and Synth Skew Adj. Output frequency of CLK3~CLK8 is programmable from 1MHz to 156.25MHz, in 1kHz steps, via either synthesizer G3~G8 or GT4 individually. CLK3~CLK8 can also output frame pulse clocks when synthesizer F is selected at the register CLK(3~8) Sel. One of frame pulse clock of Frame8K, Frame2K, or proprietary composite signal is selected at the register Frame Mux for CLK3~CLK8 individually. Phase skew of frame pulse clocks is programmable simultaneously at the register Synth Index Select and Synth Skew Adj.

Redundant Application

Timing generator T0 supports master/slave and multiple-master operation for redundant applications to allow system protection against single part failure.

External Frame Reference Input

For redundant design, either in master/slave mode or multiple-master mode, all the timing devices should keep in frame phase alignment. In order to achieve the alignment, the frame edge of reference input is required. If the reference input is not proprietary composite signal or 8kHz input signal which contains its own frame information, an external frame reference input (at pin EX_SYNC) is used and some configuration enhancements are required. See register Slave Frame Align for slave mode configuration (when pin MC/SL = 0). See register Master Frame Align for master mode configuration (when pin MC/SL = 1).

Figure 8: Output Clocks CLK8K and CLK2K

STC5420 Data Sheet: TM112 Page 19 Rev: 02 Date: 09/28/2011

Reduntant Application continued...

Master Slave Configuration

Pairs of STC5420 devices may be operated in a master/slave configuration. Pin MC/SL determines each T0 timing generator of the two devices to work in master mode or slave mode. In master/slave configuration, slave device synchronizes and frame phase aligns with the master device and reverts to lock to the same external reference that the master device was locked to, using 100Hz loop bandwidth and ignores the loop bandwidth programmed at register Loop Bandwidth. In order to achieve master/ slave frame phase alignment, two signals (one cross reference clock and one frame reference clock) or one signal (contains both cross reference and frame reference clock) is interconnected between the master and slave. The combination of cross reference and frame reference clock has four options:

- 1. High frequency output of master device feeds into REF7 of slave device as cross reference; Frame pulse 8kHz or 2kHz output of master device feeds into EX_SYNC of slave device as frame reference.
- 2. Frame pulse 8kHz output of master device feeds into EX_SYNC of slave device as cross reference and frame reference.
- 3. Proprietary composite signal of master device feeds into REF7 of slave device as cross reference and frame reference.
- 4. Proprietary composite signal of master device feeds into EX_SYNC as cross reference clock and frame reference.

To achieve 2kHz frame alignment, option 1, 3, or 4 should be selected. 8kHz on EX_SYNC pin cannot produce 2kHz frame alignment. See register Slave Frame Align for cross reference clock and frame reference clock selection details. If an error occurs when sampled on the selected frame edge of the cross reference, bit FEE of register PLL Status will be asserted. Master's frame pulse output CLK8K replace the selected frame reference input as the temporary frame reference. This error does not send alarm of synchronization failure or loss of lock. User can invoke a relock event to PLL by programming the register PLL Event In. The frame edge is re-selected as well.

User can select either falling edge or rising edge for frame reference input EX_SYNC when the frame reference input on pin EX_SYNC is not composite signal. See the register EX SYNC Edge Config.

The proprietary composite signal contains not only cross reference clock and the frame reference clock of the master device but the information of the selected reference of the master device. Having this information, the slave unit is able to identify the selected reference of the master device. Therefore, in automatic reference selection mode, when the slave device takes it over to be the new master device, it can select the reference clock which previous master device was locked to by setting bit Slave Inherit Mode of the register Control Mode. However, if the new master device operates in revertivity mode or has different qualification results than previous master device, it will select any preferred reference input.

In master/slave mode, for the latency delay on the cross-couple path, it may be compensated up and down 3.2s, in 0.1ns step. This will then minimize the phase hits to the downstream devices resulting from master/slave switches.

Multiple Master Configuration

In multiple-master configuration, every unit works as master and locks to the same reference input. Each unit has consistent loop bandwidth settings. To achieve frame phase alignment for all the masters' outputs, each device has to choose same frame edge on the selected reference input clock. The system may provides every master a common extra frame reference or simply choose a 8kHz reference input.

Frame reference clock and frame edge on each reference input is configured at register Master Frame Align. If an error occurs when sampled on the selected frame edge of the selected reference, bit FEE of register PLL Status will be asserted and frame pulse output CLK8K replaces the selected frame reference input as the temporary frame reference. This error does not send alarm of synchronization faliure or loss of lock. User can invoke a re-lock event to PLL by programming the register PLL Event In. The frame edge is re-selected as well.

Multiple master configuration works only in frame phase align mode. By writing to the Master Frame Align register, user can set T0 timing generator to frame phase align mode with the frame edge selection.

To meet the same synchronization and frame alignment requirements, each unit should keep the same parameter setup, especially loop bandwidth. Multiple-master mode demands a high quality external oscillator to obtain a precise frame phase alignment.

Event Interrupts

The STC5420 events shown following below are interrupt events might occurred.

- -Qualification status of the reference inputs change
- · -Activity status of the cross reference inputs change
- -Selected reference of timing generator T0 changes in automatic reference selection
- -Selected reference of timing generator T4 changes in automatic reference selection
- -PLL status of timing generator T0 changes
- -PLL status of timing generator T4 changes
- -Out-Event of timing generator T0 asserts
- -Out-Event of timing generator T4 asserts

Delivering a New Generation of Time and Frequency Solutions for a Connected World.

STC5420 Data Sheet: TM112 Page 20 Rev: 02 Date: 09/28/2011

Event Interrupts continued...

The interrupt events can be read from Interrupt Status register. Each bit indicates one events. The associate bit of the Interrupt Status will not be changed automatically when the event is cleared. Therefore, the user need write '1' to the associate bit to erase the event.

The STC5420 has a pin EVENT_ INTR (pin 8) for indicating the event interrupt occurrence. The pin may be wired to user's microcontroller. User can program the Interrupt Mask register to decide which of interrupt events will send an alarm to the micro-controller by asserting the EVENT_INTR pin. User can program at the Interrupt Configuration register to specify the logic level (active high or low) of the pin EVENT_INTR when it's trigged by the interrupt event. User may also program the Interrupt Configurationregister to define pin states as tri-state or logic inactive when no interrupt event occurs.

Field Upgradability

The STC5420 supports field upgradability which allows the user to load size of 7600 byte firmware configuration data (provided as per request) via bus interface. Field upgrade can only be performed at least 3ms after reset.

- 1. User may read Bit READY of the register Field Upgrade Status to check if field upgrade is ready to start.
- 2. To begin the field upgrade, write to register Field Upgrade Start three times consecutively, with no intervening read/writes from/to other registers, see the register Field Upgrade Start for details.
- 3. Once the field upgrade process begins, the STC5420 is hold for data loading. Write 7600 bytes firmware configuration data to the register Field Upgrade Data one byte at a time to complete data loading. User can read the same register for the written byte. But regardless of how many times the user read, only the last written byte will be read from the register.
- 4. Read the register Field Upgrade Count for how many bytes of configuration data has been loaded. Bit Load_Compelet of the register Field Upgrade Status will indicate whether the 7600 bytes loading is complete and meanwhile bit CHECKSUM will indicate the loading is failed or succeed. See register description of Field Upgrade Status for details.

Processor Interface Descriptions

The STC5420 supports four common microprocessor control interfaces: SPI, Motorola, Intel, and Multiplex. The control interface mode is selected with the MPU_MODE(0/1/2):

MPU_MODE2 (Pin 58)	MPU_MODE1 (Pin 59)	MPU_MODE0 (Pin 60)	Bus Mode	
0	0	1	Reserved	
0	1	0	Multiplex	
0	1	1	Intel	
1	0	0	Motorola	
1	0	1	SPI	

The following sections describe each bus mode's interface timing:

SPI Bus Mode

The SPI interface bus mode uses the CS, SCLK,SDI, SDO pins, with timing as shown in Figure 8, Figure 9 and Figure 10. For read operation, serial data output can be read out from the STC5420 on either the rising or falling edge of the SCLK. The edge selection depends on pin CLKE logic level.

Serial Bus Timing

Figure 9: SPI Bus, Read access (Pin CLKE = Low)

Delivering a New Generation of Time and Frequency Solutions for a Connected World. STC5420 Data Sheet: TM112 Page 21 Rev: 02 Date: 09/28/2011

Process Interface Descriptions continued...

Figure 10: SPI Bus Timing, Read access (Pin CLKE = High)

Symbol	Description	Min	Max	Unit
tCS	CS low to SCLK high	10		ns
^t CH	SCLK high time	50		ns
^t CL	SCLK low time	50		ns
^t Ds	Data setup time	10		ns
ťDh	Data hold time	10		ns
^t DRDY	Data ready		7	ns
tDHLD	Data hold	3		ns
^t CSHLD	CS hold	30		ns
^t CSTR	CS off to data tri-state		5	ns
^t CSMIN	Minimum delay between successive accesses	50		ns

Table 7: SPI Bus Timing

Process Interface Descriptions continued...

Motorola Bus Mode

In Motorola mode, the device will interface to 680xx type processors. The CS, WR, A(0-6), AD(0-7) and RDY pins are used. Timing is as follows in Figure 11 and Figure 12:

Motorola Bus Timing

Figure 12: Motorola Bus Read Timing

Symbol	Description	Min	Max	Unit
t _{CS}	CS low time	50		ns
t _{CSd}	CS minimum high time between reads/writes	50		ns
t _{RWs}	Read/write setup time	0		ns
t _{RWh}	Read/write hold time	0		ns
t _{As}	Address setup	10		ns
t _{Ah}	Address hold	0		ns
t _{Dd1}	Data valid delay from \overline{CS} low		50	ns
t _{Dd2}	Data high-z delay from CS high		10	ns
t _{RDYd1}	CS low to RDY high delay		13	ns
t _{RDY}	RDY high time	37	50	ns
t _{RDYh}	CS hold after RDY low	0		ns
t _{RDYd2}	RDY high-z delay after CS high		9	ns

Table 8: Motorola Bus Read Timing

Process Interface Descriptions continued...

Symbol	Description	Min	Max	Unit
t _{cs}	CS low time	50		ns
t _{CSd}	CS minimum high time between writes/reads	50		ns
t _{RWs}	Read/write setup time	0		ns
t _{RWh}	Read/write hold time	0		ns
t _{As}	Address setup	10		ns
t _{Ah}	Address hold	0		ns
t _{Ds}	Data setup time before CS high	10		ns
t _{Dh}	Data hold time after CS high	10		ns
t _{RDYd1}	CS low to RDY high delay		13	ns
t _{RDY}	RDY high time	37		ns
t _{RDYh}	CS hold after RDY low	0		ns
t _{RDYd2}	RDY high-z delay after CS high		7	ns

Table 9: Motorola Bus Write Timing

 Page 31 of 70
 Rev:2.0
 Date: September 28, 2011

 Delivering in the Conner-Winfield Corp. All Rights Reserved
 Sector and the Connert winfield Corp. All Rights Reserved
 Sector and the Connert winfield Corp. All Rights Reserved
 Sector and the Connert winfield Corp. All Rights Reserved

 Frequency Solutions for a Connected World.
 Sector and the Connert without partification on the connert without partification. See Occle website for letter revision.

Process Interface Descriptions continued...

Intel Bus Mode

In Intel mode, the device will interface to 80x86 type processors. The CS, WR, RD, A(0-6), AD(0-7), and RDY pins are used. Timing is as follows in Figure 13 and Figure 14:

Figure 14: Intel Bus Read Timing

Symbol	Description	Min	Max	Unit
t _{RDBs}	Read setup time	0		ns
t _{RDB}	Read low time	40		ns
t _{RDBh}	Read hold time	0		ns
t _{RDB1}	Time between consecutive reads	50		ns
t _{As}	Address setup	10		ns
t _{Ah}	Address hold	0		ns
t _{Dd1}	Data valid delay from RDB low		50	ns
t _{Dd2}	Data high-z delay from RDB high		10	ns
t _{RDYd1}	CS low to RDY high delay		13	ns
t _{RDYd2}	RD low to RDY low		40	ns
t _{RDY}	RDY low time	50		ns
t _{RDYh}	RD hold after RDY high	0		ns
t _{RDYd3}	RDY high-z delay after CS high		11	ns

Table 10: Intel Bus Read Timing

Process Interface Descriptions continued...

Figure 15: Intel Bus Write Timing

Symbol	Description	Min	Max	Unit
t _{WRBs}	Write setup time	0		ns
t _{WRB}	Write low time	40		ns
t _{WRBh}	Write hold time	0		ns
t _{WRB1}	Time between consecutive writes	50		ns
t _{As}	Address setup	10		ns
t _{Ah}	Address hold	0		ns
t _{Ds}	Data setup time before WR high	10		ns
t _{Dh}	Data hold time after WR high	10		ns
t _{RDYd1}	CS low to RDY high delay		13	ns
t _{RDYd2}	WR low to RDY low		40	ns
t _{RDY}	RDY low time	50		ns
t _{RDYh}	WR hold after RDY high	0		ns
t _{RDYd3}	RDY high-z delay after CS high		10	ns

Table 11: Intel Bus Write Timing

Process Interface Descriptions continued...

Multiplex Bus Mode

In multiplex bus mode, the device can interface with microprocessors which share the address and data on the same bus signals. The ALE, CS, WR, RD, AD(0-7), and RDY pins are used. Timing is as follows in Figure 15and Figure 16

Multiplex Bus Timing

Figure 16: Multiplex Bus Read Timing

Symbol	Description	Min	Max	Unit
t _{ALE}	ALE high time	10		ns
t _{ALEd}	ALE falling edge to RD low	0		ns
t _{ADs}	Address setup time	10		ns
t _{ADh}	Address hold time	10		ns
t _{CSs}	Read setup time	0		ns
t _{RDB}	Read time	40		ns
t _{CSh}	CS hold time	0		ns
t _{CSd}	CS delay for multiple read/writes	50		ns
t _{Dd1}	Data valid delay from RD low		50	ns
t _{Dh2}	Data high-z from RD high		10	ns
t _{RDYd1}	CS low to RDY active		13	ns
t _{RDYd2}	RD low to RDY low		40	ns
t _{RDY}	RDY low time	50		ns
t _{RDYh}	RD hold after RDY high	0		ns
t _{RDYd3}	RDY high-z delay after CS high		10	ns

Table 12: Multiplex Bus Read Timing

Process Interface Descriptions continued...

Figure 17: Multiplex Bus Write Timing

Symbol	Description	Min	Max	Unit
t _{ALE}	ALE high time	10		ns
t _{ALEd}	Time between ALE falling edge and WR low	0		ns
t _{ADs}	Address setup time	10		ns
t _{ADh}	Address hold time	10		ns
t _{CSs}	Write CS setup time	0		ns
t _{WRB}	Write time	40		ns
t _{CSh}	CS hold time	10		ns
t _{CSd}	CS delay for multiple write/reads	50		ns
t _{Ds}	Data setup time	10		ns
t _{Dh}	Data hold time	10		ns
t _{RDYd1}	CS low to RDY active		13	ns
t _{RDYd2}	WR low to RDY low		40	ns
t _{RDY}	RDY low time	50		ns
t _{WRBh}	WR hold after RDY high	0		ns
t _{RDYd3}	RDY high-z delay after CS high		9	ns

Table 13: Multiplex Bus Write Timing

Register Descriptions and Operation

General Register Operation

The STC5420 device has 1, 2, 3, and 4 byte registers. One-byte registers are read and written directly. Multiple -byte registers must be read and written in a specific manner and order, as follows:

Multibyte register reads

A multi byte register read must commence with a read of the least significant byte first. This triggers a latch of the remaining byte(s) to a holding register, ensuring that the remaining data will not change with the continuing operation of the device. The remaining byte(s) must be read consecutively with no intervening read/writes from/to other registers.

Multibyte register writes

A multi byte register write must commence with a write to the least significant byte first. Subsequent writes to the remaining byte(s) must be performed in ascending byte order, consecutively, with no intervening read/writes from/to other registers, but with no timing restrictions. Multibyte register writes are temporarily stored in a holding register, and are transferred to the target register when the most significant byte is written.

Chip_ID, 0x00 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x00				0x	20			
0x01				0x	54			

Indicates chip's ID number

Chip_Rev, 0x02 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x02				Revision	Number			

Indicates the revision number of STC5420

Chip_Sub_Rev, 0x03 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x03				Sub-Revisi	on Number			

Indicates the firmware revision number of STC5420

T0_MS_Sts, **0x04** (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x04				Not used				T0 M/S

Indicates the T0 timing generator <u>op</u>erating in master or slave mode. This state is selected by pin **MC_SL**. 1 = Master, 0 = slave

T0_Slave_Phase_Adj, 0x05 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x05		A	djust T0 slave p	hase from -327	'6.8 to +3276.7r	ns in 0.1 ns step	DS	
0x06								

The T0 slave phase may be adjusted from -3276.7 to +3276.7ns, in 0.1 ns steps.

Default value: 0

Fill_Obs_Window, 0x07 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x07		Not	used		Leaky bucket	fill observation	window, $m = 0$	~ 15

Sets the fill observation window size for the reference activity monitor to (m+1) ms. The window size can be set from 1ms to 16ms.

Default value: m = 0, (1ms)

Leak_Obs_Window, 0x08 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x08		Not	used		Leaky bu	ucket fill observa	ation window, <i>n</i>	= 0 ~ 15

Sets the leak observation window size for the reference activity monitor to (n + 1) times the fill observation window size. The size can be set from 1 to 16ms times the fill observation window size.

Default value: n = 3, (4 times)

Bucket_Size, 0x09 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x09	Not	used			Leaky bucke	t size, 0 ~ 63		

Sets the leaky bucket size for the reference activity monitor. Bucket size equal to 0 will bypass the leaky bucket accumulator, and assert or de-assert the activity alarm based on results of frequency detector and pulse monitor only. The bucket size must be greater than or equal to the alarm assert value. Otherwise, the value will not be written to the register.

Default value: 20

Assert_Threshold, 0x0A (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x0A	Not	used		Leaky	bucket alarm as	ssert threshold,	1 ~ 63	

Sets the leaky bucket alarm assert threshold for the reference activity monitor. The alarm assert threshold value must be greater than the de-assert threshold value and less than or equal to the bucket size value. Otherwise, the value will not be written to the register.

Default value: 15

De_Assert_Threshold, 0x0B (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x0B	Not	used		Leaky b	ucket alarm de-	assert threshold	d, 0 ~ 62	

Sets the leaky bucket alarm de-assert threshold for the reference activity monitor. The de-assert threshold value must be less than the assert threshold value. Otherwise, the value will not be written to the register.

Default value: 10

Freerun_Cali, 0x0C (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0			
0x0C		Lower 8 bits of Freerun Calibration									
0x0D			Not used	Upper 3 b	oits of Freerun C	Calibration					

Freerun calibration, from -102.4 to +102.3 ppm, in 0.1ppm steps, 2's complement.

Default value: 0

Disqualification_Range, 0x0E (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x0E		Lower 8 bits of Disqualification Range								
0x0F				Not used		Upper 2 bits Disq	ualification Range			

Reference disqualification range of fractional frequency offset, from 0 to +102.3 ppm, in 0.1 ppm steps. This also sets the pull-in range. (See the **Reference Input Monitoring and Qualification** section). New disqualification range must be greater than qualification range in register Qualification_Range. Otherwise, the value will not be written to the register.

Default value: 110 (range = 11.0 ppm).

Qualification_Range, 0x10 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x10		Lower 8 bits of Qualification Range								
0x11		Not used Upper 2 bits Qualification Range								

Reference qualification range of fractional frequency offset, from 0 to +102.3 ppm, in 0.1 ppm steps. New qualification must be less than disqualification range. Otherwise, the value will not be written to the register.

Default value: 100 (range = 10.0 ppm).

Qualification_Soaking_Time, 0x12 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x12	Not	used			0 ~	63 s		

Sets the soaking time for reference qualification, from 0 to 63s, in 1s step.

Default value: 10 (10s)

Ref_Index_Selector, 0x13 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x13		Not	used			REF1~	REF12	

Select a reference input to access the register **Ref_Info** and **Ref_Acceptable_Freq**.

Valid values from 1 to 12 are relative to Ref1 to Ref12. Invalid values will not be written to the register.

Default value: 1

Ref_Info, 0x14 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x14		Lower 8 bits of frequency offset								
0x15		Reference frequency Upper 4 bits of frequency offset								

Frequency offset (Bit11~Bit0):

- Indicates the frequency offset the reference input selected by the register **Ref_Index_Selector**. Frequency offset is from -204.7 to +204.7 ppm relative to calibrated freerun clock, in 0.1 ppm steps, 2's complement. A value of -2048 indicates the reference is out of range.

Reference frequency (Bit15~Bit12):

- Indicates frequency of the auto-detect reference input selected by the register **Ref_Index_Selector**. When field value of is 15, means manually acceptable reference input frequency is being used. Refer to the register **Ref_Acceptable_Freq** for the manually acceptable frequency setting.

The reference frequency is determined as follows ("Unknown" indicates a signal is present, but frequency is undetermined):

Field Value	Frequency
0	No signal
1	8 kHz
2	64 kHz
3	1.544 MHz
4	2.048 MHz

Reaister	Descriptions	and	Operation	continued

Field Value	Frequency		
5	19.44 MHz		
6	38.88 MHz		
7	77.76 MHz		
8	6.48MHz		
9	8.192MHz		
10	16.384MHz		
11	25 MHz		
12	50 MHz		
13	125 MHz		
14	Unknown		
15	Manually acceptable frequency is used		

Refs_Activity, 0x16 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x16	Ref 8	Ref 7	Ref 6	Ref 5	Ref 4	Ref 3	Ref 2	Ref 1
0x17	Not used			Cross ref	Ref 12	Ref 11	Ref 10	Ref 9

Reference activity indicator. 0 = inactive, 1 = active

Refs_Qual, 0x18 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x18	Ref 8	Ref 7	Ref 6	Ref 5	Ref 4	Ref 3	Ref 2	Ref 1
0x19		Not	used		Ref 12	Ref 11	Ref 10	Ref 9

Reference qualification indicator.

0 = not qualified, 1 = qualified.

Interrupt_Event_Sts, 0x1A (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x1A	Event 7	Event 6	Event 5	Event 4	Event 3	Event 2	Event 1	Event 0

Event 0: Reference qualification status

0 = no change, 1 = reference qualification status changed.

Event1: Cross reference activity status

0 = no change, 1 = cross reference activity status changed.

Event2: T0 selected reference in auto-selection mode 0= no change, 1=T0 selected reference changed

Event3: T0 PLL status

0= no change, 1 = T0 PLL status changed

Event4: T0 timing generator's event out

0= no event out, 1= any of T0 PLL event out is asserted or not cleared at the register of PLL_Event_Out

Event5: T4 selected reference in auto-selection mode 0= no change, 1 = T4 selected reference changed

Event6: T4 PLL status

0= no change, 1 = T0 PLL status changed

Event7: T4 timing generator's event out

0= no event out, 1= any of T4 PLL event out is asserted or not cleared at the register of PLL_Event_Out Interrupts are cleared by writing "1" to the bit positions. Default value: 0

Interrupt_Event_Mask, 0x1B (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x1B	Event 7	Event 6	Event 5	Event 4	Event 3	Event 2	Event 1	Event 0

Selects which of events will assert the pin EVENT_INTR to active mode (See register Interrupt_Config). 0 = mask out, 1 = enable

Default value: 0

Interrupt_Config, 0x1C (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x1C			Not	used			ldle mode	Active sig- nal level

Active signal level

Sets the signal level in active mode.

0 = active low. 1 = active high

Idle mode Specify the state of pin EVENT_INTR when no interrupt event occurs. 0 = tri-state. 1 = logic inactive

Default value: 0

Hard_Wired_Switch_Pre_Selection, 0x1D (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x1D	P	re-selected refe	erence number	2	F	Pre-selected ref	erence number	1

Pre select reference number 1 and reference number 2 in hard-wired manual reference selection mode. This mode is controlled by pin SRCSW. When pin SRCSW is LOW, reference number 1 is pre-selected. When pin SRCSW is HIGH, reference number 2 is pre-selected. It only can be configured when bit7 of Control_Mode register is set to 1 (See register **Control_Mode**).

Field Value	Selection
0	Freerun
1~12	Ref1~Ref12
13	Holdover
14~15	Reserved

Default value: 0

Field Value	Selection
0	Freerun
1~12	Ref1~Ref12
13	Holdover
14~15	Reserved

Default value: 0

SRCSW_Status, 0x1E (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x1E				Not used				Pin status

Indicates status of pin SRCSW.

0 = Low; 1 = High

Default value: 0

T0/T4_Tag_Select, 0x1F (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x1F				Not used				Tag_Select

Selects register 0x20 ~ 0x3f mapping to T0 or T4 control mode.

0 = T0; 1 = T4

Default value: 0

Control_Mode, 0x20 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x20	Hard_Wired_Switch	Slave_Inherit_Mode	OOP	Ref_Sel_Mode	Revertive	HO_Usage	Interna	al Test

Mode control bits for individual timing generator.

Internal Test

0 = Normal operation; 1 ~3= Reserved

HO_Usage

Determines which holdover history is used.

0 = Device Holdover History (DHH); 1 = User specified history

Revertive

Selects the revertive mode or non-revertive mode of the auto selector. 0 = Non-revertive; 1 = Revertive

Ref_Sel_Mode

Determines reference selection mode. 0 = Manual; 1 = Auto

This bit may be overrided by bit7 of this register.

OOP

In manual mode, when the selected reference is out of the pull-in range, as specified in register **Disqualification_Range** (0x10). OOP will determine if the reference is to be followed,

0 = Follow, 1 = Stop following at pull-in range boundary

Slave_Inherit_Mode

0 = Ignore; 1 = Slave device's auto reference elector will select the reference which master device was locked to when the cross reference is used.

Hard_Wired_Switch (T0 timing generator only)

0 = Not hard-wired Switch, selects reference in manual selection mode or auto selection mode; 1 = Hard-wired Switch, selects reference in hard-wired manual selection mode by using control pin SRCSW to fast manual switch between two pre-selected reference inputs. See register Hard_Wired_Switch_Pre_Selection.

Default value: 0

Loop_Bandwidth, 0x21 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x21				Bandwid	th select			

Sets each timing generator's loop bandwidth:

Field Value	Bandwidth, Hz
0	103
1	52
2	27
3	13
4	6.7
5	3.4
6	1.7
7	0.84
8	0.42
9	0.21
10	0.10
11~255	Reserved

Default value: 6

Auto_Elect_Ref, 0x22 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x22		Not	used			Auto selecte	ed reference	

Indicates the auto-elect reference. The auto-elect reference is elected by the elector according to revertivity status, and each reference's priority and qualification. Reference auto-elector keep electing the reference even in manual reference selection mode.

Bit 3 ~ Bit 0	Selection
0	Freerun
1 ~ 12	Sync with Ref 1 ~ Ref 12
13	Holdover
14 ~15	Reserved

Manual_Select_Ref, 0x23 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x23		Not	used			Manually sele	cted reference	

Selects the reference in manual reference selection mode.

Bit 3 ~ Bit 0	Selection
0	Freerun
1 ~ 12	Sync with Ref 1 ~ Ref 12
13	Holdover
14	Pseudo-Holdover
15	Reserved (for T0); Lock to T0 (for T4)

The register is read only in hard-wired manual switch mode. It indicates the current reference defined by pin SRCSW and Hard_Wired_Switch_Pre_Selection.

Default value: 0

Selected_Ref, 0x24 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x24		Not	used			Current selec	ted reference	

Indicates the current selected reference.

Field Value	Current selected reference
0	Freerun
1~12	Sync with Ref 1 ~ Ref 12
13	Holdover
14	Pseudo-Holdover
15	Reserved (for T0); Lock to T0 (for T4)

Device_Holdover_History, 0x25 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x25		Bits 0 - 7 of 32 bit Device Holdover History							
0x26		Bits 8 - 15 of 32 bit Device Holdover History							
0x27			Bits 16	- 23 of 32 bit D	evice Holdover	History			

STC5420 Data Sheet: TM112 Page 37 Rev: 02 Date: 09/28/2011

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x28			Bits 24	- 31 of 32 bit D	evice Holdover	History		

The accumulated device holdover history relative to MCLK. 2's complement. Resolution is 0.745x10⁻³ ppb.

Long_Term_Accu_History, 0x29 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x29		Bits 0 - 7 of 32 bit Long Term History								
0x2A		Bits 8 - 15 of 32 bit Long Term History								
0x2B		Bits 16 - 23 of 32 bit Long Term History								
0x2C			Bits	24 - 31 of 32 bi	t Long Term Hi	story				

Long term accumulated history relative to MCLK. 2's complement. Resolution is 0.745x10⁻³ ppb.

Short_Term_Accu_History, 0x2D (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x2D			Bit	s 0 - 7 of 32 bit	Short term Hist	ory			
0x2E		Bits 8 - 15 of 32 bit Short term History							
0x2F		Bits 16 - 23 of 32 bit Short term History							
0x30			Bits	24 - 31 of 32 b	it Short term His	story			

Short term accumulated history relative to MCLK. 2's complement. Resolution is 0.745x10⁻³ ppb.

User_Specified_History, 0x31 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x31		Bits 0 - 7 of 32 bit User Holdover History								
0x32		Bits 8 - 15 of 32 bit User Holdover History								
0x33		Bits 16 - 23 of 32 bit User Holdover History								
0x34			Bits 2	4 - 31 of 32 bit I	Jser Holdover I	listory				

User accumulated history relative to MCLK. 2's complement. Resolution is 0.745x10⁻³ ppb.

Default value: 0

History_Ramp, 0x35 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x35	Long	Term History Ad	ccumulator Ban	dwidth	Short Term H mulator E	History Accu- Bandwidth	Ramp	Control

History accumulator holdover bandwidth and ramp controls.

Bits 7 ~ 4	Long Term History -3dB Bandwidth
0	4.9 mHz
1	2.5 mHz
2	1.2 mHz
3	0.62 mHz
4	0.31 mHz
5	0.15 mHz
6, 7	Reserved
8	1.3Hz
9	0.64Hz
10	0.32Hz
11	0.16Hz
12	79mHz
13	40mHz
14	20mHz
15	9.9mHz

Bits 3 ~ 2	Short Term History -3dB Bandwidth
0	1.3 Hz
1	0.64 Hz
2	0.32 Hz
3	0.16 Hz

Bits 1 ~ 0	Ramp control
0	No Control
1	1.0 ppm/sec
2	1.5 ppm/sec
3	2.0 ppm/sec

Default value: 27 (1.2mHz; 0.64Hz; 2ppm/sec)

Ref_Priority_Table, 0x36 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0		
0x36		Ref 2	Priority			Ref 1	Priority			
0x37		Ref 4	Priority			Ref 3	Priority			
0x38		Ref 6	Priority			Ref 5	Priority			
0x39		Ref 8	Priority			Ref 7	Priority			
0x3A	Ref 10 Priority			C3A Ref 10 Priority Ref 9 Priority			Ref 9 Priority			
0x3B		Ref 12 Priority				Ref 11	Priority			

Reference priority for automatic reference selector. Lower values have higher priority:

Bits 7~4/Bits 3~0	Reference Priority			
0	Revoke from auto reference elector			
1 ~ 15	Value 1 ~ 15			

Default value: 0

PLL_Status, 0x3C (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x3C	HHA	DHT	FEE	SAP	OOP	LOL	LOS	SYNC

SYNC Indicates synchronization has been achieved

- 0 = Not synchronized
- 1 = Synchronized
- LOS Loss of signal of the selected reference 0 = No Loss 1 = Loss (Indicate loss of signal, freerun, pseudo holdover and holdover)
- LOL Loss of lock (Failure to achieve or maintain lock) 0 = No loss of lock 1 = Loss of lock (Indicate loss of lock, freerun, pseudo holdover and holdover)
- OOP Out of pull-in range. Indicate the frequency offset of the selected reference input is out of pull-in range. 1 = Out of pull-in range 0 = In range
- SAP Indicates the output clocks have stopped following the selected reference, caused by out of pull-in range

1 = Stop following at pull-in range boundary 0 = Following

- FEE Frame edge error. Indicates whether an error occurs in the frame edge selection process in slave mode or master phase align mode. For timing generator T0 only.
 1 = Frame edge error occurs
 0 = No frame edge error occurs
- *DHT* Device Holdover History tracking

1 = Device holdover history is being tracked.

- 0 = Device holdover history is based on the last available history.
- HHA Holdover History Availability. Config **Control_Mode** register to select which of holdover history is used.

Device Holdover History or User Specified History. 1 = Available 0 = Not available

Holdover_Accu_Flush, 0x3D (W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x3D				Not used				HO flush

Writing to this register will perform a flush of the accumulated history. The value of bit zero determines which histories are flushed.

HO flush:

- 0 = Flush and reset long term history to 0
- 1 = Flush/reset both long term history and the device holdover history to 0.

PLL_Event_Out, 0x3E (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x3E	Event7	Event6	Event5	Event4	Event3	Event2	Event1	Event0

Event0: Reserved Event1: Reserved Event2: Reserved Event3: Reserved Event4: Reserved Event5: Reserved Event6: Reserved Event7: Reserved

Events are cleared by writing "1" to the bit positions

PLL_Event_In, 0x3F (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x3F	Event7	Event6	Event5	Event4	Event3	Event2	Event1	Event0

Writing 1 to trigger the event. If the event is acknowledged by the STC5420, event bit is cleared to be 0.

Event0: Relock

Sets PLL to relock the selected reference input. If the device operates in phase-align mode, PLL rese lects the frame edge, relocks and frame phase align to the reference input. If the device operates in non phase-align mode, PLL relocks to the reference input and restart phase rebuild process.

Event1: Reserved Event2: Reserved Event3: Reserved Event4: Reserved Event5: Reserved

Event6: Reserved

Event7: Reserved

Default value: 0

EX_SYNC_Edge_Config, 0x40 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x40	Not used							Edge Select

Select whether falling edge or rising edge is used as frame reference pulse, when receiving the external frame reference input at pin EX_SYNC.

Bits 0	Edge Select	
0	Falling edge	
1	Rising edge	

Default value: 1

Slave_Frame_Align, 0x41 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x41	Not used				Frame Ec	lge Select	Cross Ref S Frame R	Source and ef Select

Selects the cross reference source and sampling edge of cross reference for T0 frame alignment in slave mode. T4 timing generator not support slave mode.

Cross Ref Source Select: Selects the cross reference and frame reference.

Bits 1 ~ 0	Cross Ref Source and Frame Ref Select
0	Selects high frequency input at pin REF7 as cross reference; Selects 8kHz or 2kHz clock at pin EX_SYNC as external frame reference.
1	Selects 8kHz clock at pin EX_SYNC as cross reference
2	Selects composite signal which contains both cross reference and 2kHz frame information at pin REF7
3	Selects composite signal which contains both cross reference and 2kHz frame information at pin EX_SYNC

Frame Edge Select: Select frame edge of the cross reference if the external frame reference is being used.

Bits 3 ~ 2	Frame Edge Select
0, 1	Selects cross reference's rising edge <i>nearest</i> to the frame pulse on the external frame reference
2	Selects cross reference's rising edge <i>previous</i> to the frame pulse on the external frame refer- ence
3	Selects cross reference's rising edge next to the frame pulse on the external frame reference

Delivering a New Generation of Time and Frequency Solutions for a Connected World. STC5420 Data Sheet: TM112 Page 42 Rev: 02 Date: 09/28/2011

Default value: 0

Master_Frame_Align, 0x42 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x42	Frame Phase Alignment and Edge Selection for Ref2		Frame Reference Selec- tion for Ref2		Frame Phase Alignment and Edge Selection for Ref1		Frame Reference Selec- tion for Ref1	
0x43	Frame Phase Alignment and Edge Selection for Ref4		Frame Reference Selec- tion for Ref4		Frame Phase Alignment and Edge Selection for Ref3		Frame Reference Selec- tion for Ref3	
0x44	Frame Phase Alignment and Edge Selection for Ref6		Frame Reference Selec- tion for Ref6		Frame Phase Alignment and Edge Selection for Ref5		Frame Reference Selec- tion for Ref5	
0x45	Frame Phase Alignment and Edge Selection for Ref8		Frame Reference Selec- tion for Ref8		Frame Phase Alignment and Edge Selection for Ref7		Frame Refe tion fo	rence Selec- r Ref7
0x46	Frame Phase Alignment Frame and Edge Selection for ti Ref10		Frame Refe tion for	Frame Reference Selec- tion for Ref10		Frame Phase Alignment and Edge Selection for Ref9		rence Selec- r Ref9
0x47	Frame Phase Alignment and Edge Selection for Ref12		Frame Reference Selec- tion for Ref12		Frame Phase Alignment and Edge Selection for Ref11		Frame Reference Selec- tion for Ref11	

Selects frame reference and sampling edge on selected reference for T0 frame alignment in master mode. T4 timing generator not support frame phase alignment.

Frame Reference Selection:

Bits 1 ~ 0 Bits 5 ~ 4	Frame Reference Select
0	Selects unit's own Frame8K as frame reference
1, 2, 3	Selects 8kHz clock at pin EX_SYNC as external frame ref- erence

Frame phase alignment and edge selection:

Bits 3 ~ 2 Bits 7 ~ 6	Frame Edge Select
0	Frame phase arbitrary mode. Frame reference ignored
1	Frame phase align mode, selects selected reference's rising edge <i>nearest</i> to the frame pulse on the external frame reference
2	Frame phase align mode, selects selected reference's rising edge <i>previous</i> to the frame pulse on the external frame reference

Bits 3 ~ 2 Bits 7 ~ 6	Frame Edge Select
3	Frame phase align mode, selects selected reference's rising edge <i>next</i> to the frame pulse on the external frame reference

Default value: 0

Synth_Index_Select, 0x4A (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x4A	Not Used			Synthesizer ir	ndex selection for phase skew	or synthesizer fi adjustment	requency and	

Determines which synthesizer is selected for setting frequency value at the register **Synth_Freq_Value** and adjusting phase skew at the register **Synth_Skew_Adj**.

CLK1~CLK8 can be derived from synthesizer G_1 ~ G_8 through T0 path, respectively, in which CLK3~CLK8 can also be derived from synthesizer F through T0 path or synthesizer G_{T4} through T4 path.

Field Value	Synthesizer	Associated CLK Output
0	Synthesizer F	CLK8K, CLK2K, CLK3~CLK8
1	Synthesizer G ₁	CLK1
2	Synthesizer G ₂	CLK2
3	Synthesizer G ₃	CLK3
4	Synthesizer G ₄	CLK4
5	Synthesizer G ₅	CLK5
6	Synthesizer G ₆	CLK6
7	Synthesizer G7	CLK7
8	Synthesizer G ₈	CLK8
9	Synthesizer G _{T4}	CLK3~CLK8

Default value: 0

Synth_Freq_Value 0x4B (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x4B		Bits 0-7 of 18 bits Synthesizer Frequency Selection							
0x4C		Bits 15-8 of 18 bits Synthesizer Frequency Selection							
0x4D	Not used B						Bits 17-16 of 18 Frequency	bits Synthesizer y Selection	

Selects synthesizer frequency value from 1MHz to 156.25MHz, in 1kHz steps, for synthesizer $G_1 \sim G_8$, or G_{T4} . Synthesizer is selected at register **Synth_Index_Select**. CLK1~CLK8 is derived from synthesizer $G_1 \sim G_8$ through T0 path, respectively, in which CLK3~CLK8 can also be derived from synthesizer F through T0 path or synthesizer G_{T4} through T4 path.

This reigster is not writable for synthesizer F since its frequency is fixed at 8kHz and 2kHz. But phase skew of synthesizer F is programmable at the register **Synt_Skew_Select**.

Default value varies with synthesizer index selection at the register **Synth_Index_Select**, refer to table below:

Synthesizer Index Selection	Associated CLK Output	Default Value
Synthesizer G ₁	CLK1	155520 (155.52MHz)
Synthesizer G ₂	CLK2	125000 (125MHz)
Synthesizer G ₃	CLK3	19440 (19.44MHz)
Synthesizer G ₄	CLK4	38880 (38.88MHz)
Synthesizer G ₅	CLK5	2048 (2.048MHz)
Synthesizer G ₆	CLK6	25000 (25MHz)
Synthesizer G ₇	CLK7	50000 (50MHz)
Synthesizer G ₈	CLK8	1544 (1.544MHz)
Synthesizer G _{T4}	CLK3~CLK8	2048 (2.048MHz)

Synth_Skew_Adj, 0x4E (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x4E		Lower 8 bits of Synthesizer Phase Skew Adjustment							
0x4F		Not used				Higher 4 bits of Synthesizer Phase Skew Adjustment			

Phase skew adjust for synthesizers based on which synthesizer index is selected at the register **Synth_Index_Select**. See description of the register **Synth_Index_Select**. The adjustment is from -6400/128 ns to 6396.875/128 ns, which is -50ns ~ 49.976 ns, in 3.125/128 ns steps, 2's complement.

Synthesizer Index Selection	Associated CLK Output
Synthesizer F	CLK8K, CLK2K, CLK3~CLK8
Synthesizer G ₁	CLK1
Synthesizer G ₂	CLK2
Synthesizer G ₃	CLK3
Synthesizer G ₄	CLK4
Synthesizer G ₅	CLK5
Synthesizer G ₆	CLK6
Synthesizer G ₇	CLK7
Synthesizer G ₈	CLK8
Synthesizer G _{T4}	CLK3~CLK8

Default value: 0 (For all the synthesizers)

CLK1/2_Signal_Level 0x50 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x50	Not used						CLK2 Signal Level	CLK1 Signal Level

Selects the signal level for clock outputs CLK1 and CLK2. 0

$$0 = LVPECL, 1 = LVDS$$

Default value: 0

CLK1_Sel, 0x51(R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x51			Ν	lot used			CLK1 Synth	esizer Select

Selects clock output CLK1 derived from synthesizer G1 or put in tri-state.

Bits 1 ~ 0	CLK1 Synthesizer Select
0, 2, 3	Put CLK1 in tri-state mode
1	Synthesizer G ₁

Default value: 0

CLK2_Sel, 0x52(R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x52					CLK2 Synthe	esizer Select		

Selects clock output CLK2 derived from synthesizer G₂ or put in tri-state.

Bits 1 ~ 0	CLK2 Synthesizer Select
0, 2, 3	Put CLK2 in tri-state mode
1	Synthesizer G ₂

Default value: 0

CLK3_Sel, 0x53 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x53		Not used						esizer Select

Selects the clock output CLK3 derived from synthesizer G₃ (T0), synthesizer F or synthesizer G_{T4} (T4). Composite signal, Frame8K, and Frame2K are all produced at synthesizer F. When synthesizer F is selected, sets bit1~bit0 of the register Frame_Mux to select frame pulse clock from composite signal, Frame8K, or Frame2K. Signal level of CLK3 is LVCMOS.

Register Frame_Mux (Bit1~Bit0)	Register CLK3_Sel (Bit1~Bit0)	CLK3 Synthesizer Select
Х	0	Put CLK3 in tri-state mode
Х	1	Synthesizer G ₃ (T0)
0	2	Synthesizer F composite signal (T0)

STC5420 Data Sheet: TM112 Page 46 Rev: 02 Date: 09/28/2011

Register Frame_Mux (Bit1~Bit0)	Register CLK3_Sel (Bit1~Bit0)	CLK3 Synthesizer Select
1	2	Synthesizer F Frame8K
2	2	Synthesizer F Frame2K
3	2	CLK3 tie to ground
Х	3	Synthesizer G _{T4} (T4)

Default value: 0

CLK4_Sel, 0x54 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x54			Not	used			CLK4 Synthe	esizer Select

Selects the clock output CLK4 derived from synthesizer G_4 (T0), synthesizer F or synthesizer G_{T4} (T4). Composite signal, Frame8K, and Frame2K are all produced at synthesizer F. When synthesizer F is selected, sets bit3~bit2 of the register **Frame_Mux** to select frame pulse clock from composite signal, Frame8K, or Frame2K. Signal level of CLK4 is LVCMOS.

Register Frame_Mux (Bit3~Bit2)	Register CLK4_Sel (Bit1~Bit0)	CLK4 Synthesizer Select
Х	0	Put CLK4 in tri-state mode
Х	1	Synthesizer G ₄ (T0)
0	2	Synthesizer F composite signal (T0)
1	2	Synthesizer F Frame8K
2	2	Synthesizer F Frame2K
3	2	CLK4 tie to ground
Х	3	Synthesizer G _{T4} (T4)

Default value: 0

CLK5_Sel, 0x55 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x55		Not used						esizer Select

Selects the clock output CLK5 derived from synthesizer G_5 (T0), synthesizer F or synthesizer G_{T4} (T4). Composite signal, Frame8K, and Frame2K are all produced at synthesizer F. When synthesizer F is selected, sets bit5~bit4 of the register **Frame_Mux** to select frame pulse clock from composite signal, Frame8K, or Frame2K. Signal level of CLK5 is LVCMOS.

Register Frame_Mux (Bit5~Bit4)	Register CLK5_Sel (Bit1~Bit0)	CLK5 Synthesizer Select
Х	0	Put CLK5 in tri-state mode

STC5420 Data Sheet: TM112 Page 47 Rev: 02 Date: 09/28/2011

Register Frame_Mux (Bit5~Bit4)	Register CLK5_Sel (Bit1~Bit0)	CLK5 Synthesizer Select
Х	1	Synthesizer G ₄ (T0)
0	2	Synthesizer F composite signal (T0)
1	2	Synthesizer F Frame8K
2	2	Synthesizer F Frame2K
3	2	CLK5 tie to ground
Х	3	Synthesizer G _{T4} (T4)

Default value: 0

CLK6_Sel, 0x56 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x56			Not	used			CLK6 Synthe	esizer Select

Selects the clock output CLK6 derived from synthesizer G_6 (T0), synthesizer F or synthesizer G_{T4} (T4). Composite signal, Frame8K, and Frame2K are all produced at synthesizer F. When synthesizer F is selected, sets bit7~bit6 of the register **Frame_Mux** to select frame pulse clock from composite signal, Frame8K, or Frame2K. Signal level of CLK6 is LVCMOS.

Register Frame_Mux (Bit7~Bit6)	Register CLK6_Sel (Bit1~Bit0)	CLK6 Synthesizer Select		
Х	0	Put CLK6 in tri-state mode		
Х	1	Synthesizer G ₄ (T0)		
0	2	Synthesizer F composite signal (T0)		
1	2	Synthesizer F Frame8K		
2	2	Synthesizer F Frame2K		
3	2	CLK6 tie to ground		
Х	3	Synthesizer G _{T4} (T4)		

Default value: 0

CLK7_Sel, 0x57 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x57			Not	used			CLK7 Synthe	esizer Select

Selects the clock output CLK7 derived from synthesizer G_7 (T0), synthesizer F or synthesizer G_{T4} (T4). Composite signal, Frame8K, and Frame2K are all produced at synthesizer F. When synthesizer F is selected, sets bit9~bit8 of the register **Frame_Mux** to select frame pulse clock from composite signal, Frame8K, or Frame2K. Signal level of CLK7 is LVCMOS.

Register Frame_Mux (Bit9~Bit8)	Register CLK7_Sel (Bit1~Bit0)	CLK7 Synthesizer Select	
Х	0	Put CLK7 in tri-state mode	
Х	1	Synthesizer G ₄ (T0)	
0	2	Synthesizer F composite signal (T0)	
1	2	Synthesizer F Frame8K	
2	2	Synthesizer F Frame2K	
3	2 CLK7 tie to ground		
Х	3	Synthesizer G _{T4} (T4)	

Default value: 0

CLK8_Sel, 0x58 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x58		Not used						esizer Select

Selects the clock output CLK8 derived from synthesizer G_8 (T0), synthesizer F or synthesizer G_{T4} (T4). Composite signal, Frame8K, and Frame2K are all produced at synthesizer F. When synthesizer F is selected, sets bit11~bit10 of the register **Frame_Mux** to select frame pulse clock from composite signal, Frame8K, or Frame2K. Signal level of CLK8 is LVCMOS.

Register Frame_Mux (Bit11~Bit10)	Register CLK8_Sel (Bit1~Bit0)	CLK8 Synthesizer Select		
Х	0	Put CLK8 in tri-state mode		
Х	1	Synthesizer G ₄ (T0)		
0	2	Synthesizer F composite signal (T0)		
1	2	Synthesizer F Frame8K		
2	2	Synthesizer F Frame2K		
3	2	CLK8 tie to ground		
Х	3	Synthesizer G _{T4} (T4)		

Default value: 0

Frame8K_Sel, 0x59 (R/W) Frame2K_Sel, 0x5A (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x59		Invert	Duty Cycle Select for Frame8K or put CLK8K into tri-state						
0x5A		Invert		Duty Cycle Se	elect for Frame2	2K or put CLK2	K into tri-state		

Selects duty cycle of the Frame8K and Frame2K generated from synthesizer F and determine frame edge is rising or falling. Set 0 Bit5~0 to put CLK8K/CLK2K into tri-state or put Frame8K/Frame2K of synthesizer F to ground.

Bit 5 ~ 0	Duty Cycle Select
0	Put CLK8K/CLK2K into tri-state or put Frame8K/Frame2K to ground
1~62	Pulse width 1 to 62 cycle of 155.52MHz
63	50% duty cycle

Bits 6	Invert
0	Not inverted (frame on rising edge)
1	Inverted (frame on falling edge)

Default value: 63 (50% duty cycle, not inverted)

Ref_Acceptable_Freq, 0x5B (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x5B		Lower 8 bits of integer N Select						
0x5C	Not used		Higher 7 bits of integer N Select					

Enable frequency auto detect function or set integer N for the manual acceptable reference frequency for individual reference input .

Setting this register to 0 to enable the automatic detection for reference input which is selected at the register **Ref_Index_Selector**. The auto-detect acceptable reference input frequencies are shown in Table 3.

Select the integer N for the manually acceptable reference at frequency of Nx8kHz (N is integer from 1 to 32767) for REF1 ~ REF12. Which of reference input is selected for the manually acceptable reference is depending on the index selected at the register **Ref_Index_Selector**.

Setting integer N (from 1 to 32767) at this register allows user to manually select the acceptable reference input frequency at the integer multiple of 8kHz, range from 8kHz to 262.136MHz. For instance, user can select integer N = 19440 to manually accept frequency at 19440x8kHz = 155.52MHz.

Field Value	Integer N Select
0	Enable auto detection for reference input
1~32767	Integer N for the manual acceptable reference frequency

Default value: 0

Frame_Mux, 0x5D (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x5D	Frame CLK6 s	mux of election	Frame CLK5 s	mux of election	Frame mux of CLK4 selection		Frame mux of CLK3 selection	
0x5E		Not used				mux of election	Frame CLK7 s	mux of election

Select one of frame signals (Frame8K, Frame2K, and composite signal) derived from synthesizer F and forward it to output selection of CLK3~CLK8 individually. Output selection of CLK3~CLK8 is programmed at the registers **CLK(3~8)_Sel**.

Bit1~Bit0 Bit3~Bit2 Bit5~Bit4 Bit7~Bit6 Bit9~Bit8 Bit11~Bit10	Frame signal select
0	Proprietary composite signal
1	Frame8K
2	Frame2K
3	Ground

Default value: 0

Diff_REF_Polarity, 0x5F (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x5F			N		REF12 Polarity	REF11 Polarity		

Reverse polarity of positive and negative for differential reference input REF11_P/REF11_N and REF12_P/REF12_N.

REF11/REF12 Polarity:

1: Normal polarity

0: Reverse polarity of P and N. Use falling edge of P instead of rising edge

Default value: 3

Field_Upgrade_Status, 0x70 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x70			Not used		Load_Complete	READY	Checksum	

Checksum

Checks whether the 7600 bytes firmware configuration data is loaded successfully.

0 = Fail, 1 = Success

READY

Indicates if field upgrade is ready to begin, normally is set to 1 at 3 milliseconds (3ms) after the reset.

0 = Not ready

1 = Ready

Load_Complete

Indicates whether the loading of 7600 bytes firmware configuration data is complete.

0 = Not complete

1 = Complete

Field_Upgrade_Data, 0x71 (R/W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x71		Field upgrade of firmware configuration data						

Writes the firmware configuration data (7600 bytes) to this register one byte at a time to complete data loading. Only the last written byte can be read from this register, no matter how many times of reads performed.

Default value: 0

Field_Upgrade_Count, 0x72 (R)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0	
0x72		Lower 8 bits of byte count for firmware configuration data							
0x73				Hi	igher 5 bits of	byte count for firmv	vare configuration d	lata	

Reads this register for how many bytes of 7600 bytes firmware configuration data has been loaded through the register **Field_Upgrade_Data** (0x71).

Default value: 0

Field_Upgrade_Start, 0x74 (W)

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x74		Start field upgrade						

If bit READY of the register **Field Upgrade Status** (0x70) is set to 1, user can write three values to this register consecutively, with no intervening read/writes from/to other registers to start the process of field upgrade. 7600 bytes firmware configuration data can only start loading after the three values are written successfully.

Sequence of Writes	Bit 7 ~ 0
First	0x51
Second	0x52
Third	0x53

MCLK_Freq_Reset, 0x7F (R/W)

Register Writes:

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x7F		External oscillator frequency selection						

Select accepted frequency of MCLK input by writing the associated value to this register three times consecutively, with no intervening read/writes from/to other register. The associated values for the four accepted frequency (10MHz, 12.8MHz, 19.2MHz, 20MHz) are as shown in table below. Three times of consecutive writes will trigger internal soft-reset. Initial default accepted frequency for STC5420 is 12.8MHz. The accepted frequency of MCLK input returns to 12.8MHz following any regular reset.

Perform writes at least 50us after the regular reset has done.

Associated written values are shown below:

Bit 7 ~ 0	External Oscillator Frequency Selection
0x11	10MHz
0x22	12.8MHz
0x44	19.2MHz
0x88	20MHz

Register Read:

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x7F	FR	QID	CO	UNT		ID_Writte	en_Value	

This register allows the user read back three values as follows:

FRQID

Indicates the ID of the frequency of MCLK that the STC5420 currently accept. Constant 1 can be read from FRQID initially since the default accepted frequency for the STC5420 is 12.8MHz. The value of FRQID can only be updated when three consecutive valid writes are written to the register **MCLK_Freq_Reset** completely.

Bit 7 ~ 6 FRQID	MCLK Frequency
0	10MHz
1	12.8MHz
2	19.2MHz
3	20MHz

COUNT

Indicates how many times this register has been written to. COUNT is set to 1 when each time a different valid associated value is written to for the first time and is clear to 0 after three times valid writes are completed.

As described above in Register Writes, the associated value should be written to this register three times consecutively, with no intervening read/writes from/to other register. If the written value is invalid or the consecutive writes operation is interrupted by reading/writing from/to other register, COUNT is clear to 0.

Bit 5 ~ 4 COUNT	Counter
0	No written or invalid
1	Once
2	Twice
3	Three times

ID_Written_Value

Indicates the ID of associated value that is being written to this register. The ID is updated when each time a different valid associated value is written to this register for the first time.

As described above in Register Writes, the associated value should be written to this register three times consecutively, with no intervening read/writes from/to other register. If the written value is invalid or the consecutive writes operation is interrupted by reading/writing from/to other register, ID_Written_Value is clear to 0.

Bit 3 ~ 0 ID_Written_Value	Written value to this register (0x7F)
0	No written or invalid
1	0x11
2	0x22
4	0x44
8	0x88

Default value: 0x40 (12.8MHz)

Noise Transfer Functions

User may write to register Loop Bandwidth to set the PLL loop bandwidth for each timing generator. The noise transfer function of the PLL filter is determined by the loop bandwidth. Figure 17 shows the noise transfer functions as the loop bandwidth vary from 100mHz to 103Hz.

Figure 18: Noise Transfer Functions

Order Information

All STC5420 parts are RoHS 6/6 compliant. The product revision number is provided by register Chip_Rev (0x02) and Chip_Sub_Rev (0x03). The revision number has format of A.B.C. The latest revision is 3.1.1. It is backward compatible with previous revisions. Distribution of the register address is shown below:

Chip_Rev

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x02	A			В				

Chip_Sub_Rev

Address	Bit7	Bit6	Bit5	Bit4	Bit3	Bit2	Bit1	Bit0
0x03	С							

Part Number	Description
STC5420 rev 3.1.1	Industrial Temperature Range Model (-40°C ~ +85 °C)

Specification Modification

This section lists the changes to STC5420 specification from previous revision 2.01. Current revision is STC5420 rev 3.1.1.

- Add a frame mux to allow user to select Frame8K or Frame2K for clock output CLK3~CLK8 individually. See register Frame_Mux and CLK(3~8)_Sel.
- Add a register to reverse polarity of differential reference input REF11_P/REF11_N and REF12_P/REF12_N. See register Diff_REF Polarity.
- Remove LVCMOS level for REF11 and REF12

Application Notes

This section describes typical application use of the STC5420 device. The General section applies to all application variations.

General

Power and Ground

Well-planned noise-minimizing power and ground are essential to achieving the best performance of the device. The device requires 3.3V digital power and analog power input.

It is desirable to provide individual 0.1uF bypass capacitors, located close to the chip, for each of the power input leads, subject to board space and layout constraints.

Ground should be provided by as continuous a ground plane as possible. A separated analog ground plane is recommended. *Note: Unused reference inputs must be grounded.*

Figure 19: Power and Ground

Master Oscillator

An external 3.3V LVCMOS level clock (generally derived from TCXO or OCXO) is supplied at pin MCLK as master clock. TCXO or OCXO should be carefully chosen as required by application. It is recommended that the oscillator is placed close to the STC5420. Frequency of the master oscillator has four options, see description of the register MCLK Freq Reset for details.

Mechanical Specifications

Revision I	History	
Revision	Date	Note
02	09/28/11	Update Functional diagram and miscellaneous

